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Foreword 

Ten years ago there were two worlds of research that rarely crossed. My world, the 
world of computer graphics, tried to solve a well-defined problem. Given the geo
metrical and material description of a virtual scene, a definition of the light sources 
in that scene, and a virtual camera, create an image that looks as close as possible to 
one that a real camera in a real version of the described scene would look like. In the 
other research world, that of computer vision, researchers were struggling with the 
opposite question. Given one or more real images of a real scene, get the computer 
to describe the geometrical, material, and lighting properties in that real scene. 

The computer graphics problem was having great success, to a point. Surprising 
to many of us, the real problem derived from a realization that the geometric com
plexity of the real world overwhelmed our abilities to create it in current geometric 
modelers. Consider a child's fuzzy stuffed lion. To create an accurate image of such 
a lion could require the daunting task of describing every strand of hair and how it 
reflects and transmits light. This is about when we went to knock on the doors of 
our computer vision colleagues. We hoped, a bit prematurely, that perhaps we could 
just point cameras at the fuzzy lion and a computer vision algorithm could spit out 
the full geometric description of the lion. The state-of-the-art was (and still is) that 
computer vision algorithms could give us an approximate model of the scene but not 
the kind of detail we needed. In some ways we were lucky, for if they had given 
us the full model in all its detail, the computer graphics rendering algorithms most 
likely could not deal with such complex models. 

It was this point that the ideas underlying image based rendering were born. The 
idea is that by using the partial success of computer vision algorithms PLUS keeping 
the original pixels contained in the input images, one could then leverage the partial 
success of computer graphics. I feel quite honored to have been a part of making 
some of the first realistic synthetic images of a child's stuffed lion in just this way. 
The results that have grown from this initial idea have been quite astounding. 

The book you are about to read introduces the reader to the rich collaboration 
that has taken place over the past decade at the intersection of computer graphics 
and computer vision. The authors have lived in this exciting research world and have 
produced many of the seminal papers in the field. The book provides both a historical 



perspective and the technical background for the reader to become familiar with the 
major ideas and advances in the field. This can, in turn, provide the basis for the 
many new discoveries awaiting anyone willing to jump into the field. The results are 
already having a major impact on the computer game and film industry. Similar ideas 
are also finding their way into consumer products for digital photography and video. 
Hopefully the reader will find new ways to apply these ideas in yet undiscovered 
ways. 

Michael Cohen 
March 2006 
Seattle, WA 



Preface 

When image-based rendering (IBR) first appeared in the graphics scene about ten 
years ago, it was greeted with a lot of enthusiasm. It was new and fresh then and it had 
(and still has) the potential for generating photorealistic images. Unlike traditional 
3D computer graphics in which 3D geometry of the scene is known, IBR techniques 
render novel views directly from input images. It was this aspect of IBR that attracted 
much attention. Pioneering works in this area include Chen and Williams' view in
terpolation, Chen's QTVR, McMillan and Bishop's plenoptic modeling, Levoy and 
Hanrahan's light field, and Gortler et al.'s Lumigraph. 

IBR is unique in graphics in that it drew significant interest not only from re
searchers in graphics, but researchers in computer vision as well as image and signal 
processing. A lot of progress has been made in this field, in terms of improving the 
quality of rendering and increasing its generality. For example, more representations 
have been proposed in order to handle more scenarios such as increased virtual mo
tion, complicated non-rigid effects (highly non-Lambertian surfaces), and dynamic 
scenes. Much more is known now about the fundamental issue of sampling for IBR, 
which is important for the process of image acquisition. There is also a significant 
amount of work on compression techniques specifically geared for IBR. These tech
niques are critical for the practical use of IBR in conventional PCs. Interestingly, 
despite the large body of work accumulated over the years, there was no single book 
that is devoted exclusively to IBR. 

This was the primary motivation for this book. Much of the material in this book 
is the result of years of research by the authors at Microsoft Research (in Redmond 
and Beijing) and through collaboration between Microsoft Research and The Uni
versity of Hong Kong. The book is intended for researchers and practitioners in the 
fields of vision, graphics, and image processing. 

Microsoft Research Asia Heung-Yeung Shum 
The University of Hong Kong Shing-Chow Chan 
Microsoft Research Sing Bing Kang 

February 2006 
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Introduction 

One of the primary goals in computer graphics is photorealistic rendering. Much 
progress has been made over the years in graphics in a bid to attain this goal, with 
significant advancements in 3D representations and model acquisition, measurement 
and modeling of object surface properties such as the bidirectional reflectance dis
tribution function (BRDF) and surface subscattering, illumination modeling, nat
ural objects such as plants, and natural phenomena such as water, fog, smoke, 
snow, and fire. More sophisticated graphics hardware that permit very fast render
ing, programmable vertex and pixel shading, larger caches and memory footprints, 
and floating-point pixel formats also help in the cause. In other words, a variety of 
well-established approaches and systems are available for rendering models. See the 
surveys on physically-based rendering [232J, global illumination methods [691, and 
photon mapping (an extension of ray tracing) [130]. 

Despite all the advancements in the more classical areas of computer graphics, 
it is still hard to compete with images of real scenes. The rendering quality of envi
ronments in animated movies such as Shrek 2 and even games such as Ghost Recon 
for Xbox 360^*^ is excellent, but there are hints that these environments are syn
thetic. Websites such as http://www.ignorancia.org/ showcase highly photorealistic 
images that were generated through raytracing, which is computationally expensive. 
The special effects in high-budget movies blend seamlessly in real environments, but 
they typically involved many man-hours to create and refine. The observation that 
full photorealism is really hard to achieve with conventional 3D and model-based 
graphics has led researchers to take a "short-cut" by working directly with real im
ages. This approach is called image-based modeling and rendering. Some of the 
special effects used in the movie industry were created using image-based rendering 
techniques described in this book. 

Image-based modeling and rendering techniques have received a lot of attention 
as a powerful alternative to traditional geometry-based techniques for image syn
thesis. These techniques use images rather than geometry as the main primitives 
for rendering novel views. Previous surveys related to image-based rendering (IBR) 
have suggested characterizing a technique based on how image-centric or geometry-
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Fig. 1.1. IBR continuum. It shows the main categories used in this book, with representative 
members shown. Note that the Lumigraph [911 is a bit of an anomaly in this continuum, since 
it uses explicit geometry and a relatively dense set of source images. 

centric it is. This has resulted in the image-geometry continuum (or IBR continuum) 
of image-based representations [155, 134]. 

1.1 Representations and Rendering 

For didactic purposes, we classify the various rendering techniques (and their as
sociated representations) into three categories, namely rendering with no geometry, 
rendering with implicit geometry, and rendering with explicit geometry. These cate
gories, depicted in Figure 1.1, should actually be viewed as a continuum rather than 
absolute discrete ones, since there are techniques that defy strict categorization. 

At one end of the IBR continuum, traditional texture mapping relies on very ac
curate geometric models but only a few images. In an image-based rendering system 
with depth maps (such as 3D warping [189], and layered-depth images (LDI) [264], 
and LDI tree [39]), the model consists of a set of images of a scene and their as
sociated depth maps. The surface light field [323] is another geometry-based IBR 
representation which uses images and Cyberware scanned range data. When depth 
is available for every point in an image, the image can be rendered from any nearby 
point of view by projecting the pixels of the image to their proper 3D locations and 
re-projecting them onto a new picture. For many synthetic environments or objects, 
depth is available. However, obtaining depth information from real images is hard 
even with state-of-art vision algorithms. 

Some image-based rendering systems do not require explicit geometric models. 
Rather, they require feature correspondence between images. For example, view in
terpolation techniques [40] generate novel views by interpolating optical flow be
tween corresponding points. On the other hand, view morphing [260] results in-
between camera matrices along the line of two original camera centers, based on 
point correspondences. Computer vision techniques are usually used to generate such 
correspondences. 
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At the other extreme, light field rendering uses many images but does not require 
any geometric information or correspondence. Light field rendering [160] produces 
a new image of a scene by appropriately filtering and interpolating a pre-acquired set 
of samples. The Lumigraph [91] is similar to light field rendering but it uses approx
imate geometry to compensate for non-uniform sampling in order to improve ren
dering performance. Unlike the light field and Lumigraph where cameras are placed 
on a two-dimensional grid, the Concentric Mosaics representation [267] reduces the 
amount of data by capturing a sequence of images along a circle path. In addition, it 
uses a very primitive form of a geometric impostor, whose radial distance is a func
tion of the panning angle. (A geometric impostor is basically a 3D shape used in IBR 
techniques to improve appearance prediction by depth correction. It is also known as 
geometric proxy.) 

Because light field rendering does not rely on any geometric impostors, it has 
a tendency to rely on oversampling to counter undesirable aliasing effects in out
put display. Oversampling means more intensive data acquisition, more storage, and 
higher redundancy. 

1.2 Sampling 

What is the minimum number of images necessary to enable anti-aliased rendering? 
This fundamental issue needs to be addressed so as to avoid undersampling or unnec
essary sampling. Sampling analysis in image-based rendering, however, is a difficult 
problem because it involves unraveling the relationship among three elements: the 
depth and texture information of the scene, the number of sample images, and the 
rendering resolution. Chai et al. showed in their plenoptic sampling analysis [33] 
that the minimum sampling rate is determined by the depth variation of the scene. 
In addition, they showed that there is a trade-off between the number of sample im
ages and the amount of geometry (in the form of per-pixel depth) for anti-aliased 
rendering. 

1.3 Compression 

Because image-based representations are typically image-intensive, compression be
comes an important practical issue. Compression work has been traditionally carried 
out in the image and video communities, and many algorithms have been proposed to 
achieve high compression ratios. Image-based representations for static scenes tend 
to have more local coherence than regular video. The issues associated with dynamic 
scenes are similar for regular video, except that there is now the additional dimen
sions associated with the camera viewpoint. As a result, image-based representations 
have a significantly more complicated structure than regular video because the neigh
borhood of image samples is not just along a single time axis as for regular video. For 
example, the Lumigraph is 4D, and it uses a geometric impostor. Image-based rep
resentations also have special requirements of random access and selective decoding 
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for fast rendering. As subsequent chapters will reveal, geometry has been used as a 
means for encoding coherency and compressing image-based representations. 

1.4 Organization of book 

This book is divided into four parts: representations and rendering techniques, 
sampling, compression, and systems and applications. Each part is relatively self-
contained, but the reader is encouraged to read the Part I first to get an overall picture 
of IBR. In a little more detail: 

Part I: Representations and Rendering Techniques 

The chapters in this part survey the different representations and rendering mech
anisms used in IBR. It starts with a survey of representations of static scenes. In 
this survey, important concepts such as the plenoptic function, classes of represen
tations, and view-dependency are described. Systems for rendering dynamic scenes 
are subsequently surveyed. From this survey, it is evident that the design decisions 
on representation and camera layout are critical. A separate chapter is also devoted 
to rendering; it describes how rendering depends on the representation and what the 
common rendering mechanisms are. 

Part II: Sampling 

This part addresses the sampling issue, namely, the minimum sampling density re
quired for anti-aliased rendering. The analysis of plenoptic sampling is described to 
show the connection between the depth variation of the scene and sampling density. 
Three different interpretations are given: using sampling theorem, geometric analy
sis, and optical analysis. A representation that capitalizes on the sampling analysis to 
optimize rendering performance (called layered Lumigraph) is also described in this 
part. 

Part III: Compression 

To make any IBR representation practical, it must be easy to generate, data-efficient, 
and fast to render. This part focuses on the sole issue of compression. IBR com
pression is different from conventional image and video compression because the 
non-trivial requirements of random access and selective decoding. Techniques for 
compressing static IBR representations such as light fields and Concentric Mosaics 
are described, as are those for dynamic IBR representations such as panoramic videos 
and dynamic light fields. 
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Part IV: Systems and Applications 

The final part of the book showcases four different IBR systems. One system demon
strates how Concentric Mosaics can be made more compact using the simple obser
vation about perception of continuous motion. Another system allows customized 
layout of representations to large scene visualization so as to minimize image cap
ture. The layout trades off the number of images with the viewing degrees of free
dom. 

Segmentation and depth recovery are difficult processes—the third system was 
designed with this in mind, and allows the user to help correct for areas that look 
perceptually incorrect. This system automatically propagates changes to the user in
puts to "pop-up" layers for rendering. Finally, the fourth system allows a light field 
to be morphed to another through user-assisted feature associations. It preserves the 
capability of light fields to render complicated scenes during the morphing process. 
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Representations and Rendering Techniques 

The first part of the book is a broad survey of IBR representations and rendering tech
niques. While there is significant overlap between the type of representation and the 
rendering mechanism, we chose to highlight representational and rendering issues in 
separate chapters. We devote two chapters to representations: one for (mostly) static 
scenes, and another for dynamic scenes. (Other relevant surveys on IBR can be found 
in [155, 339, 345].) 

Unsurprisingly, the earliest work on IBR focused on static scenes, mostly due 
to hardware limitations in image capture and storage. Chapter 2 describes IBR rep
resentations for static scenes. More importantly, it sets the stage for other chapters 
by describing fundamental issues such as the plenoptic function and how the repre
sentations are related to it, classifications of representations (no geometry, implicit 
geometry, explicit geometry), and the importance of view-dependency. 

Chapter 3 follows up with descriptions of systems for rendering dynamic scenes. 
Such systems are possible with recent advancements in image acquisition hardware, 
higher capacity drives, and faster PCs. Virtually all these systems rely on extracted 
geometry for rendering due to the limit in the number of cameras. It is interesting 
to note their different design decisions, such as generating global 3D models on a 
per-timeframe basis versus view-dependent layered geometries, and freeform shapes 
versus model-based ones. The different design decisions result in varying rendering 
complexity and quality. 

The type of rendering depends on the type of representation. In Chapter 4, we 
partition the type of rendering into point-based, layer-based, and monolithic-based 
rendering. (By monolithic, we mean single geometries such as 3D meshes.) We 
describe well-known concepts such as forward and backward mapping and ray-
selection strategies. We also discuss hardware rendering issues in this chapter. 
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Additional Notes on Chapters 

A significant part of Chapter 2 is based on the journal article "Survey of image-based 
representations and compression techniques," by H.-Y. Shum, S.B. Kang, and S.-C. 
Chan, which appeared in IEEE Trans. On Circuits and Systems for Video Technol
ogy, vol. 13, no. 11, Nov. 2003, pp. 1020-1037. ©2003 IEEE. 

Parts of Chapter 3 were adapted from "High-quality video view interpolation us
ing a layered representation," by C.L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, 
and R. Szeliski, ACM SIGGRAPH and ACM Transactions on Graphics, Aug. 2004, 
pp. 600-608. 

Xin Tong implemented the "locally reparameterized Lumigraph" (LRL) de
scribed in Section 2.4. Yin Li and Xin Tong contributed significantly to Chapter 4. 
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In Chapter 1, we introduced the IBR continuum that spans a variety of representa
tions (Figure 1.1). The continuum is constructed based on how geometric-centric the 
representation is. We structure this chapter based on this continuum: representations 
that rely on no geometry are described first, followed by those using implicit geom
etry (i.e., relationships expressed through image correspondences), and finally those 
with explicit 3D geometry. 

2.1 Rendering with no geometry 

We start with representative techniques for rendering with unknown scene geometry. 
These techniques typically rely on many input images; they also rely on the charac
terization of the plenoptic function. 

2.1.1 Plenoptic modeling 

(a) (K,, F,, VJ 

Fig. 2.1. Plenoptic functions: (a) full 7-parameter (\4, K,, 14,6', </>, A, t), (b) 5-parameter 
{V:c, Kj/, 14,6*, (/)), and (c)2-parameter {d,<p). 

The original 7D plenoptic function [2] is defined as the intensity of light rays 
passing through the camera center at every 3D location (V^, Vy,Vz) at every possible 
angle {9, cj)), for every wavelength A, at every timet, i.e., ^7(14, V ,̂ V ,̂ ̂ , </>, A.i). 
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Adelson and Bergen [2] considered one of the tasks of early vision as extracting 
a compact and useful description of the plenoptic function's local properties (e.g., 
low order derivatives). It has also been shown by Wong et al. [322] that light source 
directions can be incorporated into the plenoptic function for illumination control. By 
removing two variables, time t (therefore static environment) and light wavelength 
A, McMillan and Bishop [194] introduced the notion of plenoptic modeling with the 
5D complete plenoptic function of the form PTJ{VX, Vy, Vz,9, (f)). 

The simplest plenoptic function is a 2D panorama (cylindrical [41] or spherical 
[291]) when the viewpoint is fixed, namely P2{0, (f)- A regular rectilinear image with 
a limited field of view can be regarded as an incomplete plenoptic sample at a fixed 
viewpoint. 

Image-based rendering, or IBR, can be viewed as a set of techniques to recon
struct a continuous representation of the plenoptic function from observed discrete 
samples. The issues of sampling the plenoptic function and reconstructing a con
tinuous function from discrete samples are important research topics in IBR. As a 
preview, a taxonomy of plenoptic functions is shown in Table 2.1. 

Dimension 

7 
5 
4 

3 

2 

Year 

1991 
1995 
1996 

1999 

1994 

View space 

free 
free 

bounding 
box 

bounding 
circle 
fixed 
point 

Name 

Plenoptic function 
Plenoptic modeling 

Lightfield/ 
Lumigraph 

Concentric Mosaics 

Cylindrical/Spherical 
panorama 

Table 2.1. A taxonomy of plenoptic functions. 

The cylindrical panoramas used in [194] are two-dimensional samples of the 
plenoptic function in two viewing directions. The two viewing directions for each 
panorama are panning and tilting about its center. This restriction can be relaxed 
if geometric information about the scene is known. In [194], stereo techniques are 
applied on multiple cylindrical panoramas in order to extract disparity (or inverse 
depth) distributions. These distributions can then be used to predict appearance (i.e., 
plenoptic function) at arbitrary locations. Similar work on regular stereo pairs can 
be found in [151], where correspondences constrained along epipolar geometry are 
directly used for view transfer. 

2.1.2 Light field and Lumigraph 

It was observed in both light field rendering [160] and Lumigraph [91] systems that 
as long as we stay outside the convex hull (or simply a bounding box) of an ob-
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Focal plane 

Light ray 
P(u,v,s,t) Object 

Camera plane X,̂ ^̂  y v ^ 5 

Fig. 2.2. Representation of a light field. 

ject and the medium is non-dispersive, we can simplify the 5D complete plenoptic 
function to a 4D light field plenoptic function, 

Pi{u,v,s,i), (2.1) 

where (u, u) and {s,t) are parameters of two planes of the bounding box, as shown 
in Figure 2.2. 

The (w, v) plane is the camera plane, where the sampling cameras are located. 
Figure 2.3(a) shows a visualization of the light field from the camera plane. From a 
point corresponding to a sampling camera location, the view is the original sampled 
view. 

For the light field system of Levoy and Hanrahan, the {s,t) plane is the focal 
plane, where the scene is assumed to be located. A visualization of the light field 
from the focal plane is shown in Figure 2.3(b). Assuming that the surface of the 
scene is approximately at the focal plane, all the rays passing through a point in the 
focal plane are appearance samples of the same surface point from different views. 
This is akin to capturing the local BRDF of the scene surface for a fixed lighting 
condition. Rays are interpolated based on this assumption that the scene surface is 
close to the focal plane. Object surfaces that are located far away from the focal 
plane will appear blurred at interpolated views (this will be explained in the next 
section). On the other hand, the Lumigraph uses an approximated 3D object surface 
for view interpolation, which reduces the blur problem. Note that for the Lumigraph, 
the (u, v) plane is the focal plane while the (s, t) is the camera plane. A visualization 
of a subset of the full {u, v, s, t) space for the Lumigraph is shown in Figure 2.4. 

In the rest of this book, we will follow the notation of Lumigraph where (,s, î ) is 
the camera plane and (w, v) is the focal plane. 

Note that in general, the (w, v) and (s, t) planes need not be parallel. There is also 
an implicit and important assumption that the strength of a light ray does not change 
along its path. For a complete description of the plenoptic function for the bounding 
box, six sets of such two-planes would be needed. More restricted versions of Lu-

^ The reverse is also tme if camera views are restricted inside a convex hull. 
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Fig. 2.3. The light field seen from (a) camera plane, and (b) focal plane. The boxed subimage 
is observed from a single point in the parameter plane. (Images courtesy of Marc Levoy.) 
©1996 ACM, Inc. Included here by permission. 

Fig. 2.4. An (s, u, v) slice of a Lumigraph. (Image courtesy of Michael Cohen.) (c)1996 ACM, 
Inc. Included here by permission. 
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migraph have also been developed by Sloan et al. [277] and Katayama et al [141]. 
Here, the camera motion is restricted to a straight line. 

The principles of light field rendering and Lumigraph are similar, except that the 
Lumigraph has the additional (approximate) object geometry for better compression 
and appearance prediction. For this reason, the Lumigraph technically belongs to 
the "explicit geometry" camp (Section 2.3). It is discussed here due to its strong 
similarity with the light field. 

In the light field system, a capturing rig is designed to obtain uniformly sampled 
images. To reduce aliasing effect, the light field is pre-filtered before rendering. A 
vector quantization scheme is used to reduce the amount of data used in light field 
rendering, while achieving random access and selective decoding. On the other hand, 
the Lumigraph can be constructed from a set of images taken from arbitrarily placed 
viewpoints. A re-binning process (in this case, resampling to a regular grid using 
a hierarchical interpolation scheme) is therefore required. Geometric information is 
used to guide the choices of the basis functions. Because of the use of geometric 
information, the sampling density can be reduced. 

The P4 (w, V, s, t) two-plane parameterization is just one of many for light fields. 
Other types of light fields include spherical or isotropic light fields [113, 25], sphere-
plane light fields [25], and hemispherically arranged light fields with geometry [ 1811. 
The issue of uniformly sampling the light field was investigated by Camahort [24]. 
He introduced an isotropic parameterization he calls the direction-and-point parame
terization (DPP), and showed that while no parameterization is view-independent, 
only the DPP introduces a single bias. 

Buehler et al. [22] extended the light field concept through a technique that 
uses geometric proxies (if available), handles unstructured input, and blends tex
tures based on relative angular position, resolution, and field-of-view. They achieve 
real-time rendering by interpolating the blending field using a sparse set of locations. 

2.1.3 Concentric Mosaics 

Obviously, the more constraints we have on the camera location {Vx,Vy,Vz), the 
simpler the plenoptic function becomes. If we want to capture all viewpoints, we 
need a complete 5D plenoptic function. As soon as we stay in a convex hull (or con
versely viewing from a convex hull) free of occluders, we have a 4D light field. If 
we do not translate at all, we have a 2D panorama. An interesting 3D parameteriza
tion of the plenoptic function, called Concentric Mosaics (CMs) [267], was proposed 
by Shum and He; here, the sampling camera motion is constrained along concentric 
circles on a plane. 

By constraining camera motion to planar concentric circles, CMs can be created 
by compositing slit images taken at different locations of each circle, as shown in 
Figure 2.5. Two types of CMs are shown in Figure 2.6; in the first type, rays are 
arranged in the tangential direction (Figure 2.6(a)), and in the second type, rays are 
arranged in normal direction (Figure 2.6(b)). CMs define a 3D plenoptic function 
because they are sampled naturally by three parameters: rotation angle, radius, and 
vertical elevation. Clearly there is a one-to-one mapping between pixels in a CM and 
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Camera trajectory 

I 
' \ I 

\ / 
I / 
; / 

Fig. 2.5. Creation of CMs from source images. If the images are captured at regular inter
vals while rotated at a constant angular speed, each CM is created by just stacking the same 
columns from all the images in the order they are acquired. Note that the CM that consists of 
rays passing through the central axis of rotation is actually a (parallax-free) panorama. The 
left part of the figure is adapted from Figure 3 in [2431. 

(a) (b) 

Fig. 2.6. Types of Concentric Mosaics (CMs): a plan view. A CM is assembled by unit width 
slit images (a) tangent to the circle; and (b) normal to the circle. We call (a) tangent CMs and 
(b) normal CMs. The CMs in [267] are actually tangent CMs. 

their corresponding scene points. The CMs used in [267] are actually tangent CIvls; 
unless otherwise specified, we meant tangent CMs when we mention CMs. 

Novel views are rendered by combining the appropriate captured rays in an ef
ficient manner at rendering time. Although vertical distortions exist in the rendered 
images, they can be alleviated by depth correction. CMs have good space and com
putational efficiency. Compared with a light field or Lumigraph, CMs have a much 
smaller file size because only a 3D plenoptic function is constructed. 
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Fig. 2.7. Camera setup for acquiring Concentric Mosaics (CMs). Tiie camera is counterbal
anced by a weight; during image acquisition, it is rotated by a motor at a constant rotational 
speed. 

Capturing CMs is almost as easy as capturing a traditional panorama except that 
CMs require more images. By simply spinning an off-centered camera on a rig shown 
in Figure 2.7, Shum and He [267] were able to construct CMs for a real scene in about 
10 minutes. Like panoramas, CMs do not require the difficult modeling process of 
recovering geometric and photometric scene models. However, CMs provide a much 
richer user experience by allowing the user to move freely in a circular region and 
observe significant parallax and lighting changes. (Parallax refers to the apparent 
relative change in object location within a scene due to a change in the camera view
point.) The ease of capturing makes CMs very attractive for many virtual reality 
applications. 

It has been shown [2671 that a novel view inside the capturing circle can be 
rendered from the CMs without any knowledge about the depth of the scene. Three 
possible techniques for resampling CMs are shown in Figure 2.8. From densely sam
pled CMs, a novel view image can be rendered by linearly interpolating nearby rays 
from two neighboring CMs. In addition, a constant depth is assumed to find the best 
"nearby" rays for optimal rendering quality [33]. Figure 2.8(b) illustrates a rendering 
ray that is interpolated by two rays captured in nearby CMs. Despite the inevitable 
vertical distortion, CMs are very useful for wandering around (on a plane) in a virtual 
environment. 

Rendered views of a lobby scene from captured CMs are shown in Figure 2.9. 
A rebinned CM at the rotation center is shown in Figure 2.9(a), while two rebinned 
CMs taken at exactly opposite directions are shown in Figure 2.9(b) and (c), respec
tively. It has also been shown in [225] that such two mosaics taken from a single 
rotating camera can simulate a stereo panorama. In Figure 2.9(d), strong parallax 
can be seen between the plant and the poster in the rendered images. More specifi
cally, in the left image, the poster is partially obscured by the plant, while the poster 
and the plant do not visually overlap in the right image. This is a significant visual 
cue that the camera viewpoint has shifted. 
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Infinite depth 

(a) 

L 

CM. 

CM, 

i ^ ) 

•̂< 

Rendered novei view at P 

Constant depth 
B 1\\ • • - . . - ' " B 

(b) (c) 

Fig. 2.8. Rendering CMs with (a) infinite depth, and (b,c) constant finite depth, (a) Rebinning: 
For a given ray in virtual view P (say Vj), the CM (CM;) that is tangent to it is used. The 
column of pixels in CM; that corresponds to the line of tangency with Vj is used to construct 
part of the new view, (b) View interpolation: A ray from viewpoint A is projected to the 
constant depth surface (represented as a dotted circle) at B, and interpolated by two rays BC 
and BD that are retrieved from neighboring CMs. (c) Local warping: A ray from viewpoint 
A is projected to the constant depth surface at B, and rcprojccted to the nearest CM by the ray 
BC. 
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Fig. 2.9. Rendering a lobby [267]: rebinned Concentric Mosaic (a) at the rotation center; (b) 
at the outermost circle; (c) at the outermost circle but looking at the opposite direction of (b); 
(d) parallax change between the plant and the poster. 

2.1.4 Multiperspective images and manifold mosaics 

A multiperspective image is assembled from rays captured from multiple view
points (e.g., [348]). Multiperspective images have also been called MCOP images 
[240], multiperspective panoramas [324], pushbroom images [97], and manifold mo
saics [227], among other names. Let us consider the case of Peleg et al.'s notion of 
manifold mosaics. The manifold mosaic is created by projecting thin strips from im
ages; the shape of these thin strips depend on the camera motion. More specifically, 
for each strip, the boundaries are perpendicular to the optic flow, and the width is pro
portional to the amount of motion. The basic idea is depicted in Figure 2.10, which 
also shows an example mosaic. 

In this chapter, we define a manifold mosaic as a multiperspective image where 
each pixel has a one-to-one mapping with a scene point^. Therefore, a conventional 
perspective image, or a single perspective panorama, can be regarded as a degenerate 
manifold mosaic in which all rays are captured at the same viewpoint. 

We adopt the term manifold mosaic from [226] because the viewpoints are gen
erally taken along a continuous path or a manifold (surface or curve). For exam
ple, CMs are manifold mosaics constructed from rays taken along concentric circles 
[267]. Note that the concept of the manifold mosaic is widely used in Manifold hop
ping (Chapter 14). 

By this definition, MCOP linages arc not manifold mosaics. 
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Fig. 2.10. Manifold mosaic [227]. Top: Graphical depiction of general camera motion. The 
wedges indicate representative parts of images used to create the manifold mosaic. Bottom: 
An actual manifold mosaic created using a hand-held camera. Image (courtesy of Shmuel 
Peleg) is from "Panoramic mosaics by manifold projection," by S. Peleg and J. Herman, IEEE 
Conference on Computer Vision and Pattern Recognition, June 1997, pp. 338-343. ©1997 
IEEE. 

Although many previous image-based rendering techniques (such as view inter
polation and 3D warping) were developed for perspective images, they can be applied 
to manifold mosaics as well. For example, 3D warping has been used to reproject a 
multiple-center-of-projection (MCOP) image in [240, 2161 where each pixel of an 
MCOP image has an associated depth. 

2.1.5 Image mosaicing 

A complete plenoptic function at a fixed viewpoint can be constructed from incom
plete samples. Specifically, a panoramic mosaic is constructed by registering multiple 
regular images. For example, if the camera focal length is known and fixed, one can 
project each image to its cylindrical map and the relationship between the cylindri
cal images becomes a simple translation. For arbitrary camera rotation, one can first 
register the images by recovering the camera movement, before converting to a final 
cylindrical/spherical map. 

Many systems have been built to construct cylindrical and spherical panoramas 
by stitching multiple images together, e.g., [187, 288, 41 , 194, 291] among others. 
When the camera motion is very small, it is possible to put together only small stripes 
from registered images, i.e., slit images (e.g., [348, 226]), to form a large panoramic 
mosaic. Capturing panoramas is even easier if omnidirectional cameras (e.g., [207, 
206]) or fisheye lens [330] are used. 
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Szeliski and Shum L291] presented a complete system for constructingpa«oram!c 
image mosaics from sequences of images. Their mosaic representation associates a 
transformation matrix with each input image, rather than explicitly projecting all of 
the images onto a common surface, such as a cylinder. In particular, to construct a 
full view panorama, a rotational mosaic representation associates a rotation matrix 
(and optionally a focal length) with each input image. A patch-based alignment al
gorithm is developed to quickly align two images given motion models. Techniques 
for estimating and refining camera focal lengths are also presented. 

Fig. 2.11. Tessellated spherical panorama covering the north pole (constructed from 54 im
ages) [291]. 

In order to reduce accumulated registration errors, global alignment through 
block adjustment is applied to the whole sequence of images, which results in an 
optimally registered image mosaic. To compensate for small amounts of motion par
allax introduced by translations of the camera and other unmodeled distortions, a 
local alignment {deghosting) technique [271] warps each image-based on the results 
of pairwise local image registrations. Combining both global and local alignment 
significantly improves the quality of image mosaics, thereby enabling the creation of 
full view panoramic mosaics with hand-held cameras. 

A tessellated spherical map of the full view panorama is shown in Figure 2.11. 
Three panoramic image sequences of a building lobby were taken with the camera on 
a tripod tilted at three different angles. 22 images were taken for the middle sequence, 
22 images for the upper sequence, and 10 images for the top sequence. The camera 
motion covers more than two thirds of the viewing sphere, including the top. 

Apart from blending images to directly produce wider fields of view, one can 
use the multiple images to generate higher resolution panoramas as well (e.g., using 
maximum likelihood algorithms [115] or learnt image models [27]). There are also 
techniques to handle the exposure differences in the source image. For example, 
Uyttendaele et al. [303] perform block-based intensity adjustment to compensate for 
differences in exposures. More principled techniques have been used to compensate 
for the exposure through radiometric self-calibration (e.g., [26, 88, 186]). 
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(a) 
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Fig. 2.12. Panoramic video [302]. (a), (b) Two versions of the capture system with Point Grey's 
Ladybug^'^' 6-camera system, (c) screen shot of user interface for navigation, (d) sample 
panoramas along camera path network. 

To produce high-quality navigation in a large environment (along a constrained 
set of paths), Uyttendaele et a/. [302] capture panoramic video using Point Grey's 
Ladybug'^'^ 6-camera system. The resolution of each camera is 1024 x 768, and 
the capture rate was 15 fps. They mounted the Ladybug'^'^ on a tripod stand and 
dolly that can then be manually moved, as well as on a flattop skydiving helmet (Fig
ure 2.12(a) and (b)). Once the images were processed to remove radial distortion and 
vignetting effects, they were then stitched frame by frame. The resulting panoramic 
video was stabilized using tracked features to provide smooth virtual navigation. 

Zomet et al. [352] recently introduced a different way of producing mosaics 
called crossed-sUts projection, or X-slits projection. What is interesting about this 
rendering technique is that the sampled rays passes two non-parallel slits, an exam
ple of which is shown at the top of Figure 2.13 (where the slits are perpendicular). 
The benefits are two-fold: the generated mosaics appear closer to being perspective, 
and interesting virtual navigation can be obtained merely by changing the location 
of one slit. The bottom of Figure 2.13 shows examples of visualization that can be 
obtained through X-slits. 

2.1.6 Handling dynamic elements in panoramas 

Early approaches for generating panoramas from rotated images do not compensate 
for exposure changes or moving elements in the scene. Once the relative transforms 
for the images have been computed, Davis [59] handles moving elements in the scene 
by segmenting the panorama into disjoint regions and sampling pixels in each region 
from a single input image. Uyttendaele et al. [303] cast the moving element problem 
as a graph, with nodes representing moving objects (i.e., objects that appear in one 
image but not in another). A vertex cover algorithm is then used to remove all but 
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Fig. 2.13. Rendering using crossed-slits projection [352]. Top: A depiction of the idea witii 
perpendicular slits. Bottom: The two left images ai'e example source images of a rotating 
object, and the right two images are synthesized views of a virtual looming camera. Images 
(courtesy of Assaf Zomet, Doron Feldman, Shmuel Peleg, and Daphna Weinshall) are from 
"Mosaicing new views: The crossed-slits projection," by A. Zomet, D. Feldman, S. Peleg, and 
D. Weinshall, IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(6):741-
754, June 2003. ©2003 IEEE. 
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Fig. 2.14. Graph-based deghosting [303j. Left: Without deghosting. Right: With dcghosting. 
Images (courtesy of Matthew Uyttendaele) arc from "Eliminating ghosting and exposure ar
tifacts in image mosaics," by M. Uyttendaele, A. Eden, and R. Szeliski, IEEE Conference on 
Computer Vision and Pattern Recognition, Dec. 2001, vol. 1, pp. 2-9. (c)2001 IEEE. 

See color plate section near center of book. 
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one instance of each object. A result of their technique can be seen in Figure 2.14; 
notice the dramatic improvement in the final panorama. 
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Fig. 2.15. Dynamosaic [243]. Images (courtesy of Alex Rav-Acha and Shmuel Peleg) are from 
"Dynamo.saics: Video mosaics with non-chronological time," by A. Rav-Acha, Y. Pritch, D. 
Lischinski, and S. Peleg, IEEE Conference on Computer Vision and Pattern Recognition, June 
2005, pp. 58-65. ©2005 IEEE. 

If the image sampling is reasonably dense enough (e.g., slowly panning a camera 
on a scene with quasi-repetitive motion), manifold mosaics may be used (as de
scribed in Section 2.1.4). However, an interesting effect may be obtained by globally 
stabilizing the images in time and considering slices of the resulting space-time vol
ume as mosaics. Rav-Acha et al. [243] refer to such a sequence of mosaics as a 
dynamosaic. As a simple example shown in Figure 2.15, the camera pans from left 
to right. The first mosaic is constructed by taking the "appearance strip" of every 
image, and the last constructed using the "disappearance strip" of every image. One 
such mosaic is shown at the bottom of Figure 2.15. As the mosaic is played in se
quence using strips shifting from "appearance strip" to "disappearance strip", the 
video shows a panoramic movie of the falls, with the water flowing down. The slic
ing scheme can be arbitrary, creating specific effects as desired. (Given a video of a 
swimming meet, for example, by manipulating the spatial temporal slice shapes, a 
swimmer can be made to appear to swim faster or slower.) 

Agarwala et al. [3] use a different approach to produce a video panorama from 
similar input. Their technique is based on video textures [259], where similar frames 
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at different times are found and used to produce new seamless video. To produce a 
video panorama from just a panning video, they globally register the frames and man
ually tag regions as static and dynamic. The basic concept of video texture is applied 
to the dynamic regions to ensure that the video panorama can be played indefinitely. 
They construct the objective function to minimize difference between static and dy
namic areas that overlap and ensure local spatial consistency for hypothesized time 
offsets. This function is set up as an MRF and solved. 

•.•r iVy.V.' ' j : !Vi.V..V.<i i ' .V. ' . 

Fig. 2.16. Video panorama [3]. Top: representative input frames. Bottom: A frame (cropped) 
of the extracted video panorama. (Images courtesy of Aseem Agarwala and Colin Zheng.) 
(c)2005 ACM, Inc. Included here by permission. 

2.2 Rendering with implicit geometry 

The techniques described in the previous section sample directly from the source 
images to produce virtual views. Relative transforms between cameras or optic flow 
fields are computed mainly for stabilization for panorama creation. In this section, 
we describe a class of techniques that relies on positional correspondences (typically 
across a small number of images) to render new views. This class has the term im
plicit to express the fact that geometry is not directly available; 3D information is 
computed only using the usual projection calculations. In certain cases where the 
cameras are only weakly calibrated, Euclidean 3D information is not available even 
with correspondence information. New views are computed based on direct manipu
lation of these positional correspondences, which are usually point features. 
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The approaches under this class are view interpolation, view morphing, joint 
view interpolation, and transfer methods with fundamental matrices and trifocal (or 
trilinear) tensors. View interpolation uses general dense optic flow to directly gener
ate intermediate views. The intermediate view may not necessarily be geometrically 
correct. View morphing is a specialized version of view interpolation, except that 
the interpolated views are always geometrically correct. The geometric correctness 
is ensured because of the linear camera motion. Transfer methods are also produce 
geometrically correct views, except that the camera viewpoints can be arbitrarily 
positioned. 

2.2.1 View interpolation 

Chen and Williams' view interpolation method [40] is capable of reconstructing ar
bitrary viewpoints given two input images and dense optical flow between them. This 
method works well when two input views are close by, so that visibility ambiguity 
does not pose a serious problem. Otherwise, flow fields have to be constrained so as 
to prevent foldovers. In addition, when two views are far apart, the overlapping parts 
of two images may become too small. Chen and Williams' approach works particu
larly well when all the input images share a common gaze direction, and the output 
images are restricted to have a gaze angle less than 90°. 

Establishing flow fields for view interpolation can be difficult, in particular for 
real images. Computer vision techniques such as feature correspondence or stereo 
must be employed. For synthetic images, flow fields can be obtained from the known 
depth values. 

2.2.2 View morphing 

From two input images, Seitz and Dyer's view morphing technique [260] recon
structs any viewpoint on the line linking two optical centers of the original cameras. 
Intermediate views are exactly linear combinations of two views only if the camera 
motion associated with the intermediate views are perpendicular to the camera view
ing direction. To see this, let us assume the projection matrices for the two sampled 
viewpoints are 77i and 772. Without loss of generality, we can set 77o = Mo(73x3|0) 
and 77i = Mi(73x3|p). 73x3 is the 3 x 3 identity matrix, M Q and Mi are the intrinsic 
matrices, with 

( Ji Sj Qx 
0 O,,;/,; Qyi 
0 0 1 

fi, tti. Si, {qxi,Qyi) are the focal length, aspect ratio, skew, and principal point, re
spectively, p = {px py 0)'^ is the relative camera motion. Note that the z component 
of p is zero, which is the key to image linearity. 

A given 3D point x = {X,Y,Z,1)'^ is projected to UQ = ;|77ox in view 0 

and u i = -^IIix in view I. Suppose we linearly interpolate the 2D position in 

virtual view It as uj = (1 — i)uo + tui, with 0 < t < 1. Interestingly, we have 
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Fig. 2.17. View moiphing [260j. 7o and h are the two source views at Co and Ci, respectively, 
and It is the synthesized view. The idea of view morphing is to rectify the source views 
(yielding lo and Ij), linearly interpolate (producing /(), and transform back to unrectified 
state {It). ©1996 ACM, Inc. Included here by perniission. 
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Fig. 2.18. Two examples of view morphing. Top row: Interpolation result (middle image) for 
two images of the same face. Bottom row: Morphing between two different faces. In both 
cases, point correspondences were manually established. (Images courtesy of Steve Seitz.) 
©1996 ACM, Inc. Included here by permission. 
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U( = ^Utx., with /7( = (1 — t)77o + tlTi being a valid (but virtual) intermediate 
intrinsic matrix. As a result, for parallel source views, it is physically correct to just 
linearly interpolate point positions (assuming the point correspondences are valid). 

If the two source images are not parallel, a pre-warp stage can be employed to 
rectify two input images so that corresponding scan lines are parallel. Accordingly, 
a post-warp stage can be used to un-rectify the intermediate images. Note that this 
is possible without fully calibrating the camera. Scharstein [253] extends this frame
work to camera motion in a plane. He assumes, however, that the camera parameters 
are known. 

In a more recent work, Aliaga and Carlbom [4] describe an interactive virtual 
walkthrough system that uses a large network of omnidirectional images taken within 
a 2D plane. To construct a view, the system uses the closest set of images, warps them 
using precomputed corresponding features, and blends the results. 

2.2.3 Joint view triangulation 

The biggest problems associated with view interpolation are pixel matching and vis
ibility reasoning. Visibility reasoning is especially difficult in cases where the source 
images are uncalibrated; as a result, there is no relative depth information to predict 
occlusion in new views. Lhuillier and Quan [162] proposed the idea of joint view 
triangulation (JVT) to handle these problems. 

There are two pre-processing steps to JVT: quasi-dense matching and planar 
patch construction. Quasi-dense matching consists of interest point extraction and 
matching (using zero-mean normalized cross-correlation). This step produces an ini
tial list of correspondences sorted by the correlation score. This list is traversed in 
order, beginning with the best score, to search within the neighborhood of the point 
correspondence for more matches. The uniqueness constraint is used to ensure the fi
nal list consists of non-replicated points. The second step of planar patch construction 
assumes that the scene is piecewise smooth. It is also performed to remove possible 
mismatches. One of the images is subdivided into a regular patch grid; RANSAC 
(Random Sample Consensus) [74] is then applied to each patch to extract its homog-
raphy. 

Quasi-dense matching and planar patch construction are followed by the actual 
JVT algorithm. The basic idea of JVT is to generate Delaunay triangulations on both 
source images such that there is one-to-one correspondence in vertices and edges. 
The vertices and edges correspond to those of the precomputed patches. The patches 
are added raster style; they are labeled as matched or unmatched as appropriate. 
Patches that have no matches are given hypothesized transforms to preserve conti
nuity with those that have matches. View interpolation is then done by rendering 
unmatched patches, followed by matched patches. 

Lhuillier and Quan [163] later extended their work to using epipolar geometry for 
more robust correspondence extraction. To overcome the restrictions of using coarse 
preset patches, they added edge-based partitions to better fit object boundaries. Re
sults for an outdoor scene using their JVT algorithm can be seen in Figure 2.19. 
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Fig. 2.19. Joint view triangulation. (a) Source views witii extracted point matches, (b) Com
puted disparity at points witii correspondence. The darker the pixel, the smaller the disparity. 
White pixels represent those without any correspondence. Epipolar lines (shown as dark lines) 
are superimposed, (c) Resulting meshes with constraint edges (in red), (d) Interpolated views. 
Images courtesy of Maximc Lhuillier. 

See color plate section near center of book. 
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2.2A Transfer methods 

Transfer methods (a term used within the photogrammetric community) are char
acterized by the use of a relatively small number of images with the application of 
geometric constraints (either recovered at some stage or known a priori) to reproject 
image pixels appropriately at a given virtual camera viewpoint. The geometric con
straints can be of the form of known depth values at each pixel, epipolar constraints 
between pairs of images, or trifocal/trilinear tensors that link correspondences be
tween triplets of images. The view interpolation and view morphing methods above 
are actually specific instances of transfer methods. 

Using fundamental matrix 

Laveau and Faugeras [151] use a collection of images called reference views and the 
principle of \he fundamental matrix [72] to produce virtual views. The fundamental 
matrix F is a 3 x 3 matrix of rank 2. More specifically, if ui and U2 are two corre
sponding points in views 1 and 2 respectively, we have U2 i^i2Ui = 0. Also, U2 lies 
in the epipolar line given by F12VL1. Another important concept is the epipole: All 
epipolar lines intersect at the epipole, and the epipole is the projection of the other 
camera projection center. The epipole 612 in view 2 is the null space of F12, i.e., 
^12612 = 0. 

Suppose the point correspondences and fundamental matrix for a pair of images 
have been extracted. The virtual camera viewpoint (view 3) is specified by the user 
choosing two points eig (in image 1) and 623 (in image 2) such that e'2;^Fr2&i:i = 0. 
The image plane associated with view 3 is then interactively choosen by specifying 
three pairs of corresponding points plus one point in one of the images. It is not 
necessary to manually pick the last corresponding point in the other image because 
it can be automatically obtained using the collinearity and epipolar constraints. 

To avoid holes, the new view is computed using a reverse mapping or raytracing 
process, as shown at the top of Figure 2.20. For every pixel ma in the new target 
image, a search is performed to locate the pair of image correspondences in two ref
erence views. More specifically, for the ith pixel mu along the epipolar line in view 
1 (given by Fjims), we check if its corresponding point ui2i (part of €01(̂ 311113)) 
in view 2 satisfies the epipolar constraint 1112̂ .̂ 321113 = 0. In other words, we search 
along Fsinis until the curve 001(̂ 311113) and epipolar line 3̂21113 intersects. The 
pixel is transferred if such a point of intersection is found. Cases where no such point 
exists or multiple locations exist are discussed in [151]. An example result of using 
this technique is shown in Figure 2.20. 

Note that if the camera is only weakly calibrated, the recovered viewpoint will 
be that of a projective structure (see [72] for more details). This is because there 
is a class of 3D projections and structures that will result in exactly the same source 
images. Since angles and areas are not preserved, the resulting viewpoint may appear 
warped. Knowing the internal parameters of the camera removes this problem. In a 
later work, Faugeras et al. [73] use geometric information of the scene (such as line 
orthogonality) to recover Euclidean structure from uncalibrated images. 



Static Scene Representations 29 

View 3 (virtual) 

View 1 (source) 

TTTljnTTTrtlTTTrtlir 

If 
vr 

.il". 

JISI 
iiiill 
liiii 

• ^v^-v•^•••w.• • 

View 2 (source) 

liiir/iii 

iiii" iMi 

Fig. 2.20. View synthesis using the fundamental matrix [151]. Top: Process of finding the 
corresponding points in source views 1 and 2 that projects to point ma in virtual view 3. 
Bottom, from left to right: two source images, and novel oblique view. Images (courtesy of 
Stephane Laveau and Olivier Faugeras) are from "3-D scene representation as a collection of 
images," by S. Laveau and O.D. Faugeras, International Conference on Pattern Recognition, 
Oct, 1994, vol. A, pp. 689-691. (c)1994 IEEE. 
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Using trifocal tensor 

While the fundamental matrix establishes projective relationship between two rec
tilinear views without any knowledge of scene structure, the trifocal (or trilinear) 
tensor establishes a projective relationship across three views. The trifocal tensor is 
a 3 X 3 X 3 matrix with a number of properties related to relationships of points and 
lines across three views and extraction of fundamental and projection matrices [101]. 

One particularly interesting property is that given a pair of point correspondences 
in two source images, the trifocal tensor can be used to compute the corresponding 
point in the third image without resorting to explicit 3D computation. Note that the 
2-image epipolar search technique of [151] fails when the two epipolar lines in the 
virtual image are coincident (or becomes numerically unstable and sensitive to noise 
nearing this condition). Fortunately, the trifocal tensor avoids this degenerate case 
because of the flexible nature of relationships between points and lines across the 
three views. For example, suppose we wish to compute point 1113 in the third view 
given corresponding points mi and m2 in the first and second views, respectively, 
and trifocal tensor T, with the (i, j , fc)th element indexed as T!' (using the terminol
ogy in [101]). We can find line h perpendicular to the epipolar line given by F2im2, 
after which 1x13 can be determined from the relationship (ma)'' = (mi)*(l2)j7^-' '. 
(m)'' refers to the kxh element of point m and (1)̂  refers to the jth element of line 1. 
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Fig. 2.21. Example of visualizing using the trilinear tensor. The left-most column are the 
source images, with the rest synthesized at arbitrary viewpoints. 

The point transfer property of the trifocal tensor has been used to generate novel 
views from either two or three source images [6]. Here, the idea of generating novel 
views from two or three source images is rather straightforward. First, the "ref
erence" trilinear tensor is computed from the point correspondences between the 
source images. In the case of only two source images, one of the images is replicated 
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and regarded as the "third" image. In [6], the camera's intrinsic parameters are as
sumed known, which simphfies the specification of the new view. The trifocal tensor 
associated with the new view can be computed from the known pose change (i.e., 
changes in rotation and translation) with respect to the third camera location. With 
the trifocal tensor and correspondences across two source views known, points can 
then be transferred through forward mapping (i.e., transferring pixels from source 
to virtual views). It is not clear how visibility is handled in [6], but the modified 
painter's algorithm can be used without explicit depth reasoning. In addition, splat-
ting, where a pixel in the source image is mapped to multiple pixels, can be used to 
remove holes in the new view. (The issues of forward mapping, modified painter's 
algorithm, and splatting are discussed in Chapter 4, Section 4.3.1.) A set of novel 
views created using this approach can be seen in Figure 2.21. 

2.3 Representations with explicit geometry 

Representations that do not rely on geometry typically require a lot of images for 
rendering, and representations that rely on implicit geometry require accurate im
age registration for high-quality view synthesis. In this section, we describe IBR 
representations that use explicit geometry. Such representations have direct 3D in
formation encoded in them, either in the form of depth along known lines-of-sight, 
or 3D coordinates. The more traditional 3D model with a single texture map is a 
special case in this category (not described here, since its rendering directly uses the 
conventional graphics pipeline). 

Representations with explicit geometry include billboards, sprites, relief textures. 
Layered Depth Images (LDIs), and view-dependent textures and geometry. Sprites 
can be planar or have arbitrary depth distributions; new views are generated through 
3D warping. LDIs are extensions of depth per-pixel representations, since they can 
encode multiple depths along a given ray. View-dependent texture mapping refers 
to mapping multiple texture maps to the same 3D surface, with their colors aver
aged using weights based on proximity of the virtual viewpoint relative to the source 
viewpoints. 

2.3.1 Billboards 

In games, billboards are often used to represent complex objects such as trees. They 
are either single texture-mapped rectangles that are kept fronto-parallel with respect 
to the viewing camera (i.e., view aligned), or sets of two rectangles arranged in a 
cross. Their popularity stems from the low footprint and ease of rendering (directly 
using the traditional graphics pipeline), but they typically work well only when 
viewed at a distance. The flat appearance is very pronounced when seen close up; 
very complex objects may appear unsatisfactory even at a reasonable distance. 

To reduce these problems, Decoret et al. [63] proposed the use of billboard 
clouds (see Figure 2.22). A billboard cloud is just a set of textured, partially trans
parent billboards, with each billboard having an independent size, orientation, and 
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Fig. 2.22. Example of billboard cloud [63J. (a) Original 3D model, (b) locations of billboards, 
(c) textured billboards, (d) view of combined billboards. (Images courtesy of Xavier Decoret.) 
©2003 ACM, Inc. Included here by permission. 

texture resolution. Because a billboard cloud does not require topological informa
tion such as polygon connectivity, its format is easy to create, store, and read. Starting 
with a 3D model, Decoret et al. use an optimization approach to produce a set of rep
resentative textured planes that produce geometric errors within a specified thresh
old. To simplify the search, plane parameters are discretized into bins; planes are 
extracted sequentially by iteratively picking the bin with the minimum error. (There 
is the subsequent adaptive refinement in plane space—details can be found in [63].) 
Despite the improvements over regular billboards, billboard clouds are not intended 
for extreme close-ups. 

2.3.2 3D warping 

When the depth information is available for every point in one or more images, 3D 
warping techniques (e.g., [192]) can be used to render nearly all viewpoints. An im
age can be rendered from any nearby point of view by projecting the pixels of the 
original image to their proper 3D locations and re-projecting them onto the new pic
ture. The most significant problem in 3D warping is how to deal with holes generated 
in the warped image. Holes are due to the difference of sampling resolution between 
the input and output images, and the disocclusion where part of the scene is seen 
by the output image but not by the input images. To fill in holes, splatting is used. 
Chapter 4 has a more detailed description of this process. 

To improve the rendering speed of 3D warping, the warping process can be fac
tored into a relatively simple pre-warping step and a traditional texture mapping step. 
The texture mapping step can be performed by standard graphics hardware. This is 
the idea behind relief texture, a rendering technique proposed by Oliveira and Bishop 
[216]. A similar factoring approach has been proposed by Shade et al. in a two-step 
algorithm [264], where the depth is first forward warped before the pixel is backward 
mapped onto the output image. 

The 3D warping techniques can be applied not only to the traditional perspec
tive images, but also multi-perspective images as well. For example, Rademacher 
and Bishop [240] proposed to render novel views by warping multiple-center-of-
projection images, or MCOP images. 
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2.3.3 Layered Depth Images 

To deal with the disocclusion artifacts in 3D warping, Shade et al. proposed Layered 
Depth Images, or LDIs [264], to store not only what is visible in the input image, but 
also what is behind the visible surface. In their paper, the LDI is constructed either 
using stereo on a sequence of images with known camera motion (to extract multiple 
overlapping layers, see Figure 2.23) or directly from synthetic environments with 
known geometries. In an LDI, each pixel in the input image contains a list of depth 
and color values where the ray from the pixel intersects with the environment. 
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Fig. 2.23. Layered depth image example [264]. Five source images were used to generate 
the layered representation of the scene using the technique in [9]. Top: Extracted layers. Bot
tom: Reconstructed views. Images (courtesy of Richard Szeliski) from "A layered approach 
to stereo reconstruction," by S. Baker, R. Szeliski, and R Anandan, IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, June 1998, pp. 434-441. (c)1998 
IEEE. 

Though an LDI has the simplicity of warping a single image, it does not consider 
the issue of sampling density. Chang et al. [39] proposed LDI trees so that the sam
pling rates of the source images are preserved by adaptively selecting an LDI in the 
LDI tree for each pixel. While rendering the LDI tree, only the level of LDI tree that 
is comparable to the sampling rate of the output image need to be traversed. 
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2.3.4 View-dependent texture mapping 

Texture maps are widely used in computer graphics for generating photo-realistic 
environments. Texture-mapped models can be created using a CAD modeler for a 
synthetic environment. For real environments, these models can be generated using 
a 3D scanner or applying computer vision techniques to captured images. Unfortu
nately, vision techniques are not robust enough to recover accurate 3D models. In 
addition, it is difficult to capture visual effects such as highlights, reflections, and 
transparency using a single texture-mapped model. 
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Fig. 2.24. Importance of view-dependent texture and geometry. Depth maps were extracted 
with the source images as reference views using the multi-view stereo technique described in 
[140]. Top; Source images. Notice the significant changes in the highlights. Bottom: Interpo
lated (left) vs. actual (right) views, with close-ups of the highlights. The highlights are a little 
blurred in the virtual view but resemble the actual version. 

To obtain these visual effects of a reconstructed architectural environment, De-
bevec et al. in their Fa9ade [61] work, used view-dependent texture mapping to ren
der new views by warping and compositing several input images of an environment. 
This is the same as conventional texture mapping, except that multiple textures from 
different sampled viewpoints are warped to the same surface and averaged, with 
weights computed based on proximity of the current viewpoint to the sampled view
points. A three-step view-dependent texture mapping method was also proposed later 
by Debevec et al. [60] to further reduce the computational cost and to have smoother 
blending. This method employs visibility preprocessing, polygon-view maps, and 
projective texture mapping. For the unstructured Lumigraph work, Buehler etal. [22] 
apply a more principled way of blending textures based on relative angular position, 
resolution, and field-of-view. Kang and Szeliski [139] use not just view-dependent 
textures, but view-dependent geometries as well. This is to account for the fact that 
stereo is only locally valid for scenes with non-Lambertian properties. They blend 
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warped depth images (depth maps and textures) to produce new views, as shown in 
Figure 2.24. 

There are other approaches designed to handle non-rigid effects for IBR (mostly 
for synthetic scenes). For example, Heidrich et al. [105] handle reflections and re
fractions by decoupling geometry and illumination. This is accomplished by re
placing the usual ray-color mapping with ray-ray mapping. Rendering is done 
by constructing this geometry light field and using it to look up the illumination 
from an environment map. On the other hand, Lischinski and Rappoport's [171] 
idea for handling non-diffuse scenes is based on layered depth images (LDIs) [9, 
264]. They partition the scene into diffuse (view-independent) and non-diffuse parts. 
The view-independent parts are represented as three orthogonal high-resolution LDIs 
while the non-diffuse parts are represented as view-dependent lower-resolution LDIs. 
Rendering is done by warping the appropriate LDIs. 

Another representation that accounts for non-rigid effects is the surface light 
field [323], which handles complex reflections in real-world data. However, they also 
require detailed geometry (obtained with a laser scanner) and a very large number of 
input images to capture all the effects. We now describe an IBR representation which 
was designed to handle some non-rigid effects without the use of detailed geometry. 
Issues associated with the difficulty of modeling non-rigid effects are also discussed. 

2.4 Handling non-rigid effects 

In this section, we describe an IBR representation to handle non-rigid effects com
pactly, called locally reparameterized Lumigraph (LRL)' [299]. The LRL is based on 
the use of local and separate diffuse and non-diffuse geometries. The diffuse geome
try is associated with true or approximately true depth while the non-diffuse geome
try has virtual depth that provide local photoconsistency with respect to its neighbors. 
This is similar to [171] in that there is the notion of using layers. In contrast to [171], 
however: (1) all local geometries are view-dependent, and (2) the rendering mech
anism is different. The local geometries are used for depth correction, and do not 
contain radiance information. In [171], rendering is accomplished by warping LDIs. 
The LRL was designed to handle two common non-rigid effects: planar reflection 
and transparency, and specularity off low-curvature surfaces. 

The concept of the LRL can be explained by first analyzing the diffuse and non-
diffuse effects using the Epipolar Plane Image (EPI) [17] as a visualization tool. An 
EPI is basically a 3D representation (M, U, i) of a stacked sequence of camera images 
taken along a path, with (w, v) being the image coordinates and t being the frame 
index, and is therefore a 3D slice through a 4D Light Field. It has been used for 
stereo and multiview rendering (e.g., [100]). 

^ This name is actually inspired by the term "dynamically reparameterized Light Field" used 
in [116]. 
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2.4.1 Analysis using the EPI 

For the case of a laterally translated camera (along the x-direction) as shown in Fig
ure 2.25(a), a typical EPI slice parallel to the u ~t plane is shown in Figure 2.25(b). 
In the EPI slice, multiple trails correspond to points similar in color and brightness 
moving across the EPI image. Trails that correspond to diffuse parts of the scene 
track the same points, and thus are straight. In fact, the slope of a diffuse trail k is 
proportional to the depth of its corresponding point. On the other hand, a specular 
trail does not necessarily track the same scene point; as a result, it is often curved. 
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Fig. 2.25. EPI. (a) Camera configuration, (b) An EPI slice with highlights. 

Figure 2.26 shows a different common phenomenon, that of planar reflection. 
The flower painting is being reflected off the glass covering the Mona Lisa paint
ing. The corresponding EPI slice shows two overlapping sets of trails. The first set 
corresponds to those in the Mona Lisa painting, while the second corresponds to 
the flower painting. The slopes for the Mona Lisa trails are linked to their depths. 
The slopes for the flower trails are linked to their virtual depths, by considering the 
principles of optical reflection. Note that the flower trail slopes are less steep than 
those of the Mona Lisa counterparts, indicating that the flower painting is (at least 
virtually) behind the Mona Lisa painting. 

It is thus easy to see why using a single global or even multiple view-dependent 
local geometries may not be adequate to handle such effects. The easiest recourse 
would be to sample the images more densely. However, there is a much better way: 
diffuse and non-diffuse scene components are modeled separately using what are 
called local diffuse and non-diffuse geometries. 

2.4.2 Local diffuse and non-diffuse geometries 

In an EPI slice, two local slopes can be observed within the vicinity of where a high
light or reflection occurs: one corresponding to the diffuse component, the other the 
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Fig. 2.26. Visualizing the planar reflection effect for an object moving from right to left, (a-c) 
Three snapshots of the sequence, (d) EPI of a highlight constructed by stacking middle rows 
of images. 

non-diffuse component. Both of them are represented with the appropriately named 
local geometries to provide depth compensation for Light Field rendering. (In gen
eral, the non-diffuse trail may not stay within an EPI slice, but rather jump from slice 
to slice. It is more proper to say that 3D EPI trails are tracked, and the argument of 
local geometries still applies. This simple scenario is used for illustrative purposes.) 

Local geometry is defined to be view-dependent geometry used for depth com
pensation only within the neighborhood of the viewing camera location. The tighter 
the sampling camera configuration, the smaller this neighborhood is. This is in the 
same spirit as [237], for example. Note that the local geometry associated with a 
non-diffuse area is virtual, i.e., there may be no physical entity in the scene that cor
responds to that area, as shown by the reflection phenomenon. The function of local 
geometry, real or virtual, is to approximate the EPI trail as much as possible. For 
the LRL, a fronto-parallel plane is used to represent local geometry. Stereo data of 
real scenes were not used because such data tend to be less reliable in the presence 
of occlusions, non-rigid effects, and untextured surfaces, all of which are prevalent 
in image sets of real scenes. In addition, the analysis detailed in [33] showed that it 
is not necessary to use exact geometry for antialiased rendering. 

In synthetic environments where the geometry, diffuse, and non-diffuse parts are 
known, using a single global diffuse geometry is adequate. However, for images of 
real scenes, it is very likely that multiple local diffuse geometries will be needed. This 
is to compensate for errors in camera parameters and shape, or incorrect separation 
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of diffuse and non-diffuse components. However, it is expected that the local diffuse 
geometry would change much more slowly than its non-diffuse counterpart. 

The implications for using two different "layers" in the form of these geometries 
can be seen in Figure 2.27. The analysis shown by Chai et al. [33] indicates that it is 
the depth variation and not absolute depth in the scene that dictates the sampling rate. 
The bigger the depth variation, the larger the sampling rate required for antialiased 
rendering. The presence of the non-diffuse component has the effect of expanding 
the perceived depth variation, as can be seen in Figure 2.27. If just a single geometry 
(be it view-dependent or global) is used, the sampling rate has to be high to accom
modate the non-diffuse effect. However, if the non-diffuse can be separated from the 
diffuse, both can be depth compensated separately, yielding a tighter perceived depth 
variation, as seen to the right of Figure 2.27(b). As a result, antialiased rendering is 
possible using a lower sampling rate. 

Diffuse trail 
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Fig. 2.27. Benefit of using separate layers, (a) Closeup view of vicinity of non-diffuse trail, (b) 
Depth variation (shaded regions) required to represent both diffuse and non-diffuse component 
using 1 and 2 layers. The dotted lines in (a) are the bounding slopes for the non-diffuse trail at 
the point of intersection between the diffuse and non-diffuse trails. 

2.4.3 Implementation 

To separate the non-diffuse from the diffuse in the real scene experiment with planar 
reflection, the following was done: 

1. Choose the image with little or no reflection as the reference. 
2. Perform dominant motion estimation between the reference and the others. In 

principle, a 2D perspective or homography motion should be used. The affine 
transform was used because it was adequate and had fewer parameters to esti
mate. 

3. Compute a min-composite of the registered images, since this in principle opti
mally removes the reflection [289]. A min-composite is extracted by taking the 
color associated with the minimum luminance (across all registered images) at 
each pixel. 
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4. For each image, perform image difference between it and the motion-compensated 
min-composite to estimate the reflective components of the scene. 

A big assumption here is that the reflective components are additive and that the sur
face is uniformly reflective. This is reasonable as long as there is no pixel intensity 
saturation. Portions of the reflected image do, of course, get "trimmed" (e.g., by the 
borders of the picture frame shown in Figure 2.28). This is one reason why a single 
global view of the reflection layer is inadequate, and a local view-based representa
tion is preferable. For details on a more accurate means for separating the reflection 
component from the diffuse component, see the work of [289]. 

. • . T f r t l T T T r t l A ^ ' ^ ' - ' ' " - ' - VlYi' 
iTTTrtlTTTrtiy; rtJV; 

.•.TfnrtTTTdt. 

.•.Trv«iTiVft!ir.-i 

••iTTrtl'lTTrtl'l' 

\y,\••.•••••-•'••.•••' ' 

i-.-.v.v.-.'.V.v.-' 

I'lYYm'iYYnn 

'iVi'i'/ 

TrtWl.' 

J*^WJK;«5^:•;•.• 

•i i i i iJl 
\..:tiiir(tiiirt(iiir((Jii'f((ii,': 

• . • i W ^ y v ^ ' -.•••',',iVi'-Vf(^:-. 

(a) (b) (c) 

l.yiTYT(¥lTTT(¥lir 
.rtlTTTrtlTirirtlT 

l•(¥llm•(¥llm•(¥l^ 

•HiiVflliiVfllt,,.. 

i .•.Vrtl'lTTrtl'lTTrtl'lTTrtl'lTTrtl'lTV rtlTT(¥¥lTT(¥¥lTTl 
V iTTrtl'lTTrtl'lVvrt" " fV mTTrtWlTTrtVlTT 

V iTTrtl'lTTrtl'lTT^ ' YT mTTWoWrtWlVT 
.v iTtiiimdimi • TT aiiilifi'niiii'i' 

• 'rtWlTTrtWlTTflVlTTfrtlTTfrtlTTf.'l 
•' 'dilTtitVl'fttfil'^ .1 

.' 'tiii'titiiitiiiii ;:i 
i' 'rtwiTT/rtiYVfrt; r.'! 

(J iTTiin'iTTiVi'iirr 

•:s..-::i niii'ifiii.'itti 

ilflj ftAW^W^;......,^ 
l' •rtWlTTlftlTTfl' 

(d) (e) (f) (g) 

Fig. 2.28. Results for a real scene with reflection: (a) An original image, (b) Same image with 
only diffuse component, (c) Same image with only non-diffuse (reflection) component, (d,e) 
Rendering with single local depth at two different virtual camera poses, (f,g) Rendering with 
two local depths at the same virtual camera poses. 

The LRL renderer is similar to the one described for the Lumigraph [91], i.e., it 
uses the two-slab, 4D parameterization of light rays. As with the Lumigraph, each 
rendering ray is computed based on quadrilinear interpolation of rays from the near
est four sampling cameras using the local geometry for depth compensation. After 
rendering each layer separately, the results are then directly added to produce the 
output view. 

2.4.4 Results with two real scenes 

This section describes the results of two experiments involving real scenes: the first 
with strong reflection components and the second with highlights. Both sets were 
acquired using a camera attached to a vertical precision X-Y table that can accurately 
translate the camera to programmed positions. The first scene consists of a picture 
frame with a toy dog placed at an angle to it on the same side as the camera. A grid 
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Fig. 2.29. Results for a real scene with highlights: (a) An original image, (b) Same image with 
only diffuse component, (c) Same image with only non-diffuse (specular) component, (d,e) 
Rendering with single local depth at two different virtual camera poses, (f,g) Rendering with 
two local depths at the same virtual camera poses. The right subimages in (d-g) are closeups 
of one of the highlight areas. 

of 9 X 9 images, each of resolution 384 x 288, were captured. Figure 2.28 shows the 
rendering results for this image set. The rendering resolution is also 384 x 288. The 
layers are separated using the dominant motion estimation technique as descibed 
earlier. The rendering mechanism is exactly the same as in the previous synthetic 
experiment, with local tronto-parallel planes as local geometries. These planes are 
prespecified in the experiments. 

As can be seen from Figure 2.28(a-c), the layers have mostly been separated, 
with some residual errors. Despite these errors, the rendering results using the LRL 
representation look markedly better than using just a single geometry. The rendered 
reflections shown in Figure 2.28(f,g), which are the result of using two local geome
tries (LRL), are much sharper than those shown in Figure 2.28(d,e), which are the 
result of using only one local geometry. The slightly blurred frame and picture in 
Figure 2.28(f,g) are caused by errors in separating the layers. 

In the second set, the scene captured was that of a collection of household articles, 
including a cup and a plate. The images were taken at positions in a 65 x 5 grid, and 
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both the original and rendering resolutions are 768 x 576. In this case, we took two 
sets of images at the same camera locations; one set with the lamp switched off 
and another with the lamp on. The highlights are computed based on the difference 
between these two sets. Even with this crude means of extracting layers, we are able 
to generate good rendering results, as shown in Figure 2.29. The highlights as shown 
in Figure 2.29(f,g), which are the result of using two local geometries (LRL), are 
visibly crisper than those shown in Figure 2.29(d,e), which are the result of using 
only one local geometry. 

2.4.5 Issues with LRL 

In addition to handling the diffuse and non-diffuse components separately, another 
important feature of the LRL representation is that it can handle negative depths to 
account for possible negative slopes in the EPI trail. On the other hand, the system 
of Lischinski and Rappoport [171], which is based on warping of LDIs, cannot ac
commodate negative depths explicitly. 

The LRL uses only two local "layers" or geometries. It would be reasonably 
straightforward to extend this representation to accommodate multiple local geome
tries (diffuse and multiple non-diffuse). This would be useful in handling cases where 
multiple non-diffuse components overlap within the captured images. 

In practice, it is difficult to separate the diffuse and non-diffuse components com
pletely for images of real scenes. However, partial separation appears to be better 
than none at all. This notion was verified to a certain extent by the experiments in
volving real scenes, since diffuse/non-diffuse separation was not perfect. 

One limitation of the LRL is that it is not able to adequately account for com
plex BRDF behavior, such as rapidly changing BRDF over the scene surface. An 
example would be the shimmering surface of satin. In addition, occlusions cannot 
be handled perfectly, as geometry within the vicinity of scene discontinuity cannot 
be extracted and hence represented exactly for real scenes. Furthermore, human eyes 
are very sensitive to edges and can detect anomalies very easily, which compounds 
the problem. 

2.5 Which representation to choose? 

There are many factors influencing the choice of the representation to use: ease of 
data capture, ease of processing, rendering speed, memory footprint, database size, 
degrees of freedom and spatial extents of navigation, and quality of reconstruction. 
We discuss a subset of these factors here. 

By definition, for IBR representations, only images are required. As we have 
seen, most IBR representations require additional data, be it image correspondence 
or geometry. In IBR approaches such as those described in [237, 3231, geometry 
captured using a 3D scanner is used. In others (e.g., [106, 139]), stereo is used to 
automatically extract depth maps. Manual assistance has also been used to produce 
the desired morphing results (e.g., [260]) or geometry for rendering (e.g., [22, 61]). 
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The image capture process varies substantially from one representation to an
other. Custom equipment is required for light fields [160] and Concentric Mosaics 
(CMs) [267]. Such a requirement is relaxed for the Lumigraph [91] and the plenop-
tic modeling work of [106], where a hand-held camera is used. Similarly, Chai et 
al. [31] demonstrated visualizations with similar quality to CMs using images taken 
with only approximate circular trajectories. 

View-dependent textures on global geometry are used to account for view-
dependent appearance changes such as highlights and non-Lambertian behavior (e.g., 
[61]). However, this assumes that such a consistent global geometry can be extracted 
easily. This is not true for a general real scene with unknown surface properties and 
lighting conditions. To reduce the severity of this problem, PuUi et al. [237] and 
Kang and Szeliski [139] use view-dependent geometry as well. 

For representations that are based on implicit geometry, correspondence between 
the source images has to be somehow obtained for view transfer. Ideally, establishing 
correspondence should be automatic, and indeed, techniques for this do exist [101] 
(though for sparse correspondence). In addition, to facilitate novel viewpoint speci
fication, full camera calibration is required to ensure Euclidean view reconstruction. 
It is much less intuitive to specify a new viewpoint if cameras are only weakly cali
brated; in addition, view reconstruction is only up to a projective transform. This may 
result in an unnatural-looking skewed scene. However, if the centers of the source 
cameras lie in a line (or in general within a plane), it can be shown that the dispari
ties are linear with camera motion once the images have been rectified [260]. Regard
less,/M// frame correspondence is in general a very difficult problem, especially in 
the presence of occlusion and non-linear effects such as highlights and transparency. 

For a representation to be compelling, it has to allow a reasonably wide range 
of viewpoints to be selected. While most representations allow a wide selection of 
viewpoints, they require a substantial amount of data to be captured—this is not 
attractive from a practical standpoint. In addition, a certain amount of specialized 
knowledge about cameras is required to minimize the number of images captured. 
Content creators need to have some measure of understanding of complex issues such 
as trade-offs between field of view and resolution, type of scenes to avoid, relative 
placement of the camera to the scene (to avoid degenerate camera motions), and 
density of sampling. It is thus not surprising that despite IBR as a field having been 
around for some number of years, most of its representations have not been adopted 
for widespread commercial use. The notable exceptions are the simplest ones such 
as panoramas. 

2.6 Challenges 

This chapter shows that representations and rendering techniques can differ radically, 
depending on design decisions related to ease of capture, use of geometry, accuracy 
of geometry (if used), number and distribution of source images, degrees of freedom 
for virtual navigation, and expected scene complexity. IBR as an area of research 
has been around for about ten years, and substantial progress has been achieved in 
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effectively capturing, representing, and rendering scenes. However, many cliallenges 
remain. 

The ability to handle general complex scenes remains a big issue for IBR. The 
easiest scenes to render remain those with mostly Lambertian surfaces. While there 
are techniques that can handle reflection or translucency and highlights to a certain 
extent (e.g., [139, 166, 287, 301] and the LRL described in Section 2.4), a substantial 
amount of work is still required to ensure robustness. The surface light field [323] 
handles such effects, but it requires accurate geometry and many source images. 
What if the scene is highly complicated, like a bush or a very cluttered office? How 
can we capture the surface subscattering or inter-reflection effect of an object with 
just images? How many images are enough? Should the new representation be view-
dependent and multi-layered to account for depth, matting, and non-linear effects? 

Since IBR, by definition, uses source images for rendering, interacting with IBR 
representations remains a challenging issue. Chapter 17 describes a technique for 
morphing from light field to another, and while it is interesting, it is also a very spe
cific operation. What about typical operations such as object removal and insertion? 
How can we properly relight real scenes? 

IBR techniques that use transfer methods for generating virtual views tend to use 
a small number of source images. The issues associated with the standard computer 
vision problems of feature selection and correspondence, occlusion handling, and 
structure from motion apply. Again, most techniques assume Lambertian surfaces. 

Most of the IBR techniques described in this chapter are designed for static 
scenes. While photorealistic visualization of static scenes can be compelling, there is 
a limit on the amount of information that can be conveyed from an appearance frozen 
in time. The ability to rendering dynamic scenes is substantially more appealing. The 
next chapter surveys work done on capturing and rendering dynamic scenes. 



Rendering Dynamic Scenes 

Almost all of the early work on IBR involves the capture and rendering of static 
scenes. While rendering photorealistic static scenes is intriguing in its own right, its 
appeal and use is limited. When the "bullet time" effect (the illusion of stopping 
time and changing the camera viewpoint) appeared in the action film The Matrix 
in 1999, the effect was fresh and looked spectacular. It was not long before this 
effect, also known as the "freeze frame" effect, was emulated (and spoofed) in many 
productions, especially commercials. While there is some debate about who actually 
invented this effect, this effect has actually been used in film before The Matrix. 

Fig. 3.1. Two versions of Time-Slice camera. Left; The "Slade" camera in action, the moment 
of exposure of "Splash." Photo from British Artist's Film and Video Collection at the Tate 
Britain. ©1984 Tim Macmillan. Right: The "Josephine" camera in action (in Bahamas) for 
the BBC documentary series "Supernatural." ©1997 Time-Slice Films Ltd. 

There is documentation that the "freeze frame" effect was first demonstrated by 
Tim Macmillan in the early 1980's [217J; he calls his camera system the "Time-
Slice" camera'. Two versions of his film-based Time-Slice camera are shown in Fig-

^ http://www.timcslicefilms.com/ 
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ure 3.1. An earlier version (called "Slade," left photo of Figure 3.1) consists of 360 
pinhole film cameras arranged in a circle looking towards the center of the circle. 
Filming was done in the dark using a flash. Film stock was fed into the camera 
via a magazine and advanced 360 frames after each take. A later version (called 
"Josephine," right photo of Figure 3.1) has 120 glass lenses covering 90°. It is capa
ble of very fast sequential exposures and can create a 5-second clip of "freeze frame" 
footage^. 

Beginning 1995, Macmillan used the "freeze frame" effect in his broadcast TV 
work. Contemporaneously, Dayton Taylor used his film-based Timetrack system^ 
to produce commercials. In both cases, the "freeze frame" effect were produced by 
rapidly jumping between different still cameras arranged along a path to give the 
illusion of moving through a frozen slice of time. Michel Gondry's "Like a Rolling 
Stone" music video clip for the Rolling Stones in 1995 has also been credited with 
using the "bullet-time" effect as well. In his case, morphing between two simultane
ous camera shots was done to produce this effect [276]. 

'. . ' ^ ' : " . - i .• -1 a .1 I . - . - . -V . ^ i i ' . " . " . ^ - V . . . ; 

Fig. 3.2. Movia digital camera system (photo taken in April 2003). The 36 cameras are syn
chronized and saved uncompressed directly to digital disk recorders. The frame resolution is 
1024 X 768 and the capture rate is 15 fps. Photo courtesy of Digital Air. 

The huge interest in the "freeze frame"/"bullet time" special effect has probably 
helped spur research in capturing and rendering dynamic scenes. The "bullet time" 
effect in The Matrix was a one-time, pre-planned affair. The viewpoint trajectory was 
planned ahead of time, and many man hours were spent to produce the desired inter
polated views. Newer systems such as Digital Air's Movia are based on video cam
era arrays (see Figure 3.2), which initially relied on having many cameras to avoid 
software view interpolation. Digital Air has been using view interpolation based on 

^ Personal communication with Tim Macmillan. 
^ http://www.timetrack.com/ 
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optical flow since 1996, and is currently working on complete 3D reconstruction for 
dynamic view interpolation (using up to 80 fiigh-definition cameras at 30 fps)*. 

Extending IBR to dynamic scenes beyond just a few seconds and with arbitrary 
viewpoint selection while the scene is changing (or "bullet time" on demand), is 
not trivial. Some of the problems are associated with the difficulty and cost of syn
chronizing so many cameras as well as acquiring and storing the images. However, 
decreasing costs of hardware (such as PCs and cameras), cameras that can be easily 
synchronized, faster PCs, and higher capacity drives have helped make the capture 
of dynamic scenes and their subsequent processing more practical. Another problem 
is the difficulty of automatically generating seamless interpolation between views 
for arbitrary scenes. In this chapter, we review IBR approaches that handle dynamic 
scenes and highlight several of them. 

3.1 Video-based rendering 

IBR approaches designed to handle dynamic scenes may be considered as "video-
based rendering," with view synthesis accomplished in both along the space and time 
dimensions. The term "video-based rendering" was used in both [176] and [259], 
though [259] refers to synthesizing views only in the time dimension. A repository 
of related work can be found in http://www.video-based-rendering.org/. 

One of the earliest attempts at capturing and rendering dynamic scenes was 
Kanade et al.'s Virtualized Reality work [133]. The first version of their system uses 
51 cameras distributed on a 5-meter geodesic dome. More details of this work are 
given in a later section. Moezzi et a/.have similar goals for rendering dynamic scenes. 
They call their system Immersive Video [200], and use three to six synchronized 
cameras to capture different viewpoints of a scene. The static portion of the scene 
(background) is first manually built; dynamic objects are extracted as time-varying 
voxel representations extracted through volume intersection, from which isosurface 
objects are created and subsequently rendered. All model construction is done of
fline. 

Matusik et al. [190] use images from four calibrated Fire Wire cameras (each 
256 X 256) to compute and shade visual hulls. The computation is distributed across 
five PCs, which can render 8000 pixels of the visual hull at about 8 fps. Yang 
et al. [335] designed an 8 x 8 grid of 320 x 320 cameras for capturing dynamic 
scenes. Instead of storing and rendering the video data, they transmit only the rays 
necessary to compose the desired virtual view. In their system, the cameras are not 
genlocked; instead, they rely on internal clocks across six PCs. The camera capture 
rate is 15 fps, and the interactive viewing rate is 18 fps. 

Using the Lumigraph structure with per-pixel depth values, Schirmacher et al. [258] 
were able to render interpolated views at rates ranging from 2 to 9 fps (depending 
on image size, number of input cameras, and whether depth data has to be computed 
on-the-fly). 

Personal communication with Dayton Taylor. 
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Yang et al. [336] use graphics hardware to compute stereo data through plane 
sweeping and subsequently render new views. They are able to achieve a rendering 
rate of 15 fps with five 320 x 240 cameras. However, the matching window used is 
only one pixel, and occlusions are not handled. 

As proof of concept for storing dynamic light fields, Wilburn et al. [317] demon
strated that it is possible to synchronize six cameras (640 x 480 at 30 fps), and 
compress and store all the video data in real time. They have since increased the size 
of the system to 128 cameras [305]. The resulting system, called the Stanford Light 
Field Camera, is described later. 

The MPEG community has also been investigating the issue of visualizing dy
namic scenes, which it terms "free viewpoint video." The first ad hoc group (AHG) 
on 3D audio and video (3DAV) of MPEG was established at the 58th meeting in 
December 2001 in Pattaya, Thailand. A good overview of this MPEG activity is 
presented by Smolic and Kimata [280]. 

3.2 Stereo with dynamic scenes 

Many images are required to perform image-based rendering if the scene geometry 
is either unknown or known to only a rough approximation. If geometry is known 
accurately, it is possible to reduce the requirement for images substantially [91]. One 
practical way of extracting the scene geometry is through stereo. Within the past 20 
years, many stereo algorithms have been proposed for static scenes (see, for example 
[254] for a review of stereo techniques). However, stereo data can be more reliably 
extracted from multiple synchronized video streams by taking advantage of temporal 
coherency, assuming that objects do not move too fast. 

As part of the Virtualized Reality^'^^ work, Vedula et al. [309] proposed an al
gorithm for extracting 3D motion (i.e., correspondence between scene shape across 
time) using 2D optical flow and 3D scene shape at each time step. In their approach, 
they use a voting scheme similar to voxel coloring [261], where the measure used is 
how well a hypothesized voxel location fits the (linearized) 3D flow equation. 

Zhang and Kambhamettu [344] also integrated 3D scene flow and structure in 
their framework. A 3D affine motion model is used locally, with spatial regulariza-
tion, and discontinuities are preserved using color segmentation. Tao et al. [293] 
assume the scene is piecewise planar. They also assume constant velocity for each 
planar patch in order to constrain the dynamic depth map estimation. 

In a more ambitious effort, Carceroni and Kutulakos [28] recover piecewise con
tinuous geometry and reflectance (Phong model) under non-rigid motion with known 
lighting positions. They discretize the space into surface elements ("surfels"), and 
perform a search over location, orientation, and reflectance parameter to maximize 
agreement with the observed images. 

In an interesting twist to conventional local window matching, Zhang et al. [343] 
use matching windows that straddle space and time. The advantage of this method 
is that there is less dependence on brightness constancy over time. Their best results 
are for experiments involving structured lighting. 
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Active rangefinding techniques have also been applied to moving scenes. Hall-
Holt and Rusinkiewicz [98] use projected boundary-coded stripe patterns that vary 
over time. Depth is computed by comparing temporally adjacent stripe patterns. Be
cause of the temporal dependence in extracting stripe patterns, this technique is not 
designed for fast dynamic scenes. 

There is also a commercial system on the market called ZCam^'^ , which is a 
range sensing video camera add-on used in conjunction with a broadcast video cam
era (NTSC and PAL formats). ^ Its resolution is about 1 cm. However, it is an expen
sive system, and provides single viewpoint depth only, which makes it less suitable 
for free viewpoint video. 

3.3 Virtualized Reality^^ 

One of the first attempts at capturing dynamic scenes and rendering them at arbitrary 
viewpoints was Kanade et al.'s Virtualized Reality"^"^ work [133]. 

3.3.1 Video acquisition system 

Their first system involved 51 cameras arranged around a 5-meter geodesic dome 
(see Figure 3.3(a)). The resolution of each camera is 640 x 480 and the capture 
rate 30 fps. Later improved versions of their dynamic capture system (with larger 
workspace, better lighting control, better quality cameras, and longer recording time) 
can be seen in Figure 3.3(b) and (c). For example, in the second and later versions, 
video from multiple cameras was recorded directly to hard disks. 

To handle the high bandwidth, Kanade ef a/.acquire their video in two steps: real
time recording and off-line digitization. Real-time recording involves standard CCD 
cameras and off-the-shelf VCRs. The cameras are synchronized using a common 
external synch signal. The timing information is stored as time stamps in the video 
tapes. In the second step, the video tapes are digitized. 

3.3.2 Camera calibration and model extraction 

The intrinsic and extrinsic camera parameters are calibrated using Tsai's tech
nique [300]. Because of the wide distribution of the cameras, the calibration process 
is done in two steps. In the first step, the intrinsic parameters of each camera are 
extracted individually using a movable planar calibration pattern. With the cameras 
in their positions for acquisition, their relative poses are extracted using a known set 
of dots on the floor (ensuring that the pattern is visible to all cameras). 

To extract the shape of the scene being modeled, Kanade et a/.compute multiple 
stereo depth maps, each from a different vantage point. Each stereo depth map is 
computed at a given vantage point using immediate neighboring cameras and apply
ing the multibaseline algorithm developed by Okutomi and Kanade [215]. 

http://www.3dvsystems.com/products/zcam.html 
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(b)-

(c) 

Fig. 3.3. Virtualized Reality "'̂ '̂ ' [133] arrangement of cameras: (a) First generation; (b) Second 
generation; (c) Third generation. Images courtesy of Takeo Kanade and colleagues. 

These stereo depth maps can be used as view-dependent geometries for new view 
synthesis. In one version, the closest reference view is used, with two other nearest 
views being used to fill holes. In another version, all the depth maps are merged into 
a single surface model using a version of Curless and Levoy's volumetric integration 
technique [58]. The second version is used because of the ease of programming for 
hardware rendering. In an earlier version of the work [133], the models are com
puted independently of time. Results of this work are shown in Figure 3.4. They 
subsequently improve model extraction by capitalizing on both spatial and temporal 
coherence. 

3.3.3 Spatial-temporal view interpolation 

A multiple video-based acquisition system that captures a dynamic scene essentially 
discretely samples the scene in time and viewpoint space. The goal of rendering the 
dynamic scene is to smoothly interpolate the samples using the closest views in time 
and viewpoint. This concept is illustrated in Figure 3.5. 

To achieve spatial-temporal view interpolation, Vedula et a/.explicidy recover 
the 3D scene shape at every time frame as well as 3D scene flow [306]. "3D scene 
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Fig. 3.4. Results for an earlier version of Virtualized Reality^'^: (a) two of 51 input images, 
(b) extracted 3D geometry over time, and (c) rendered texture-mapped 3D geometries in a 
synthetic gym. Images courtesy of Peter Rander, Sundar Vedula, and Takeo Kanade. 
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Fig. 3.5. Spatial-temporal view interpolation. Images courtesy of Sundar Vedula, Simon Baker, 
and Takeo Kanade. 
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flow" refers to the local instantaneous 3D non-rigid temporal deformation of the 
dynamic scene. It connects points on the 3D scene surface at time t to scene points 
at time t — I or time ^ + 1- Vedula et a/, apply the voxel coloring algorithm [261] 
to extract the 3D scene shapes at every time instant independently, from which 3D 
scene flow is extracted at every voxel on the surface of the scene. (Other formulations 
for 3D scene flow are detailed in [307, 308]. The cases covered are: when geometry 
is known at every time instant, when image correspondences are given, and when 
there is no knowledge of the 3D surface.) The inputs used for spatial-temporal view 
interpolation are shown in Figure 3.6. 

t=i 

t = 2 ' " 

Input Images 

• • I ' 
I .1 ' 

CamerLi'__ t. .nriura C\ Caniciii C: C'anicia (",. 

Voxel Models 3D Seene Flow 

•.-.(IfJl T - l i l iT . . 

n<ni'^ • • • • n i i i . 
•ntii' ti 

• r tT l l l l ' 
'-^•'l l l l l 

VTrtWl'i rtlTlliI 
Tttii' .. .11 

••.tt--
•rtTl l l l 

S'andS^ 

•iifttf •••:;.:•:• 

•tiiy/ • • •_-_["• 

.11 r /!•.,- «,•. 
I l l f i V '."' -"ill i:i 
/J.V/ .-.•.— '/j..:; 
i i i f ',•.;•: (iif:, 
III . . • • i V . - • « • T . I 

li ./m:y.li v/i 
iiin'i.r.'.Ti^'.vi 

•' -.• •fir:. 

. i l j I - .V.f- • ' . I 

ViWlTTliV / . 

Fig. 3.6. View interpolation through 3D scene flow. Figure courtesy of Sundar Vedula, Simon 
Baker, and Talceo Kanade. 

Figure 3.7 shows the process of constructing the novel view at time t* (between 
time t and time t + 1). First, the 3D scene flow information is used to interpolate the 
(smoothed) shape S* between the scene shapes at time t and time t + I. Using the 
process of ray-casting, the point Xf on the surface of shape S* projects to a given 
pixel {u, v) in the novel view can be computed. 

Using the 3D scene flow information again, points Xf (in shape 5* at time t) 
and X*"'"̂  (in shape 5*+^ at time t + I) corresponding to Xf can be estimated. 
The colors of pixels that Xf and X*"*" are projected onto their respective images 
are then blended to produce the color at {u, v) for the novel view. The weights used 
in blending the different contributing pixels depend on a combination of temporal 
proximity and spatial proximity measured by the angle subtended between the virtual 
ray at time t* and the actual rays at time t and time t + 1. 

To reduce the pixelation effect due to discretization of the 3D scene surface, two 
steps are taken. First, smooth surfaces are fitted to the voxel centers and used in 
the ray-casting process. Second, "duplicate voxels" are used. This step is necessary 
because scene flow in one direction can be potentially many-to-one and the number 
of voxels arbitrary. As a result, a 3D point in a given time instance may map to 
multiple 3D points or none at all at a different time instance. The one-to-one property 
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Fig. 3.7. Computing the virtual view by ray-casting across space and time. Figure courtesy of 
Sundar Vedula, Simon Baker, and Takeo Kanade. 

is enforced by replicating voxels if necessary. Several view interpolation results at 
different virtual times and viewpoints are shown in Figure 3.8. 
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Fig. 3.8. Sample spatio-temporal view interpolation results. Images courtesy of Sundar 
Vedula, Simon Baker, and Takeo Kanade. 
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3.4 Image-based visual hulls 

Matusik et al. [1901 use the visual hull, which is an approximate geometric repre
sentation, to represent a 3D scene. A visual hull is constructed by casting the visible 
silhouette information from a collection of input images to 3D space and intersect
ing the cast volumes. The creation of the visual hull of a teapot from three image 
silhouettes is illustrated in Figure 3.9. 

/I 

y 

I 
. r 

y^'-

Fig. 3.9. Three extruded silhouettes of a teapot (left), and the resulting visual hull (right). 
(Figure courtesy of Wojciech Matusik.) 

While the visual hull has been used in computer vision in the past (mostly in the 
context of object recognition), Matusik et a/, demonstrated fast dynamic scene ren
dering based on the visual hull without explicit geometric or volumetric construction. 
As such, they refer to their representation as image-based visual hulls (IBVHs). The 
color information from the input images are used to provide texture for the IBVHs. 

Fig. 3.10. Reduction of polyhedron-line intersections (for visual hull compulation) to 2D in
tersections. C„ is the location of the virtual view while C'l and C2 are two input views. (Figure 
courtesy of Wojciech Matusik.) (c)2000 ACM, Inc. Included here by permission. 



Rendering Dynamic Scenes 55 

3.4.1 Computing the IBVH 

Their technique for computing the IBVH is similar to finding CSG (constructive 
solid geometry) intersections using ray-casting. Instead of constructing the 3D vi
sual hull and finding the intersection of the 3D viewing ray with the 3D geometry, 
they perform 2D ray intersections instead, which is faster. The idea is shown in Fig
ure 3.10. Suppose the desired view is at Cy, with the two inputs being at Ci and €2-
All the input cameras are fully calibrated so that the epipolar geometry (Euclidean 
projection) is known. For a given point p in the virtual image, the corresponding 3D 
ray can be constructed and projected onto the input views. These projections are the 
epipolar lines corresponding to p. 

Next, intervals where the epipolar lines crosses the silhouettes are determined 
and projected back ("lifted") to the 3D ray. The intersection of these lifted intervals 
yields the intersection between the ray for p and the visual hull. The 3D point on 
the visual hull surface is thus the closest part of the intersection of the lifted inter
vals to the virtual camera. Speedups can be achieved by capitalizing on incremental 
computations enabled by epipolar geometry. 

3.4.2 Texture-mapping the IBVH 

The IBVH uses the input images as view-dependent textures. At each pixel of the 
virtual view, the input images are ranked based on the angle between the desired 
viewing ray and the rays from the surface of the visual hull to the input images. The 
smaller the angle, the better. 

To avoid using occluded texture, visibility is checked using the visual hull. This 
check is performed pairwise, each time between the desired view and one of the input 
views. To compute the visibility of an IBVH sample with respect to an input image, 
a series of IBVH intervals are projected back onto the input image in an occlusion-
compatible order (i.e., scanning from front to back). The front-most point of the 
interval is visible if it lies outside of the unions of all preceding intervals. A slightly 
more complicated algorithm is used to conservatively account for the discretization 
of the image. 

3.4.3 System implementation 

Matusik et a/, use four calibrated Sony DFW500 Firewire video cameras, with each 
camera attached to a separate 600 MHz PC. Each PC captures video, corrects for 
radial distortion using a look-up table, segments out the foreground, and sends out 
the silhouette and texture over to a separate PC (which acts as a server). The server, 
which is a quad-processor 550 MHz PC, is used to compute and render the IBVH. 

A typical IBVH covers about 8000 pixels in a 640 x 480 image, and rendering 
speed is slightly higher than 8 fps. Sample rendering results can be seen in Fig
ure 3.11. The polyhedral-like shape is attributed to the small number of cameras 
used. As with all visual hulls, concavities that cannot be observed as silhouettes can
not be handled. 
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Fig. 3.11. Rendered IBVH al different views. The back of the person was unseen by any cam
era, which accounts for the missing texture (right image in middle row). Used with permission 
(courtesy of Wojciech Matusik). 

3.5 Stanford Light Field Camera 

The Stanford Light Field Camera started as a proof-of-concept 6-camera system [317], 
which was later expanded to a system of 128 CMOS cameras [305], Two possible 
set ups are shown in Figure 3.12. The light field acquisition system is a modular 
design based on the IEEE 1394 high speed serial bus (Firewire). Each module is 
custom-made; it has an image sensor and is capable of MPEG compression. The im
age sensor has a resolution of 640 x 480 and is capable of capturing at 30 fps. Even 
though CMOS sensors generally have worse noise characteristics than CCD sensors, 
Wilburn et al. [317] chose CMOS sensors because they are easier to digitally inter
face with and control (for example, dealing with exposure time, gain, and gamma 
correction). The system is designed to return live, synchronized, slightly compressed 
(8:1 MPEG) video from all 128 cameras at once, and to record these video streams 
through four PCs to a striped disk array. 

Goldlucke et al. [87] used a subset of the Stanford Light Field Camera for acquir
ing and displaying dynamic scenes. They first calibrate the cameras to extract their 
intrinsic and extrinsic parameters. The cameras are also calibrated to reduce radial 
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Fig. 3.12. Two configurations of the Stanford light field camera array. Top: Arrangement of 8 
rows of 16 cameras each. Camera spacing is about 2 inches. Bottom: Arrangement of 5 panels 
in an arc, with each panel containing 25 cameras. Camera spacing is about 9 inches. Used with 
permission (courtesy of the Stanford Multi-Camera Array Project). 

distortion as well as color and brightness variation across cameras. The camera color 
characteristics are calibrated using matrices obtained from MacBeth color chart im
ages. The brightness variation across cameras is reduced through image equalization. 

3.5.1 Depth map extraction 

Depth maps are used to warp sample views to the new view. Suppose we are to com
pute the depth map for input camera view Cj and that there are k input cameras 
(Ci, i = 1,..., k). For each pair of cameras Cj and Ci{i ^ j), the chosen disparity 
\ij is computed by searching along the epipolar line for best matches in a manner 
that attempts to minimize spatial depth changes while preserving depth discontinu
ities at image edges. Legitimate disparities are chosen to be those that fall within a 
prescribed range; the "optimal" disparity is then computed to be the mean of these 
disparities. The discrepancy in the disparities is most likely caused by image noise 
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Fig. 3.13. Four sample images from the Stanford Light Field Camera (top row), and estimated 
disparity images (bottom row). Used with permission (courtesy of Bastian Goldlucke, Marcus 
Magnor, and Bennett Wilburn). 

and blocking artifacts from the MPEG-encoded input images. As a result, it is dif
ficult to produce depth maps that are correct to within a pixel at the boundaries. 
Examples of computed depth maps are shown in Figure 3.13. 

Fig. 3.14. Generating the virtual view; (a) triangle mesh superimposed on disparity image, 
(b) mesh warped to the new view, (c) texture warped to the new view, and (d) final result of 
blending the warped views of the four nearest cameras. Used with permission (courtesy of 
Bastian Goldliicke, Marcus Magnor, and Bennett Wilburn). 
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3.5.2 Interactive rendering 

The interactive rendering step assumes that the dense disparity maps for all the im
ages and timeframes have been precomputed. For a chosen novel view, the four near
est input depth images (color and depth maps) are used to generate the novel view. To 
exploit the polygon processing capabilities of OpenGL as well as hardware texturing 
and blending, Goldliicke et a/.create a regular (downscaled) triangle mesh covering 
each of the input depth images. The disparity at each vertex of the downscaled trian
gle mesh is computed to be the average of disparities at the surrounding pixels. 

A vertex program is used to warp each contributing depth image to the novel 
view. The warped color images are combined using weights assigned based on prox
imity to the novel view (more specifically, the closer the input image is to the novel 
view, the higher the weight). Backfacing triangles are culled during rendering since 
they are obscured by a closer object. 

The warping and blending results are shown in Figure 3.14. With a mesh resolu
tion of 160 X 120 (block size of 2 x 2 pixels), the frame rate obtained using a 1.7 
GHz PC with an nVidia GeForce 4 graphics card is about 11 fps. Notice that because 
the triangular mesh is continuous, the appearance in the vicinity of significant depth 
discontinuities will in general be incorrect (the main artifact being blurring). 

3.6 Model-based rendering 

We have seen that the Virtualized Reality""^ work uses a single global geometry for 
rendering. Meanwhile, the work associated with the Stanford Light Field Camera 
uses view-dependent local geometries to produce novel views. In both cases, the 
geometries were extracted without any knowledge of the scene (that is, no shape 
priors were assumed). 

In this section, we highlight three approaches that fit a human model to the 
dynamic scene and subsequently render the model using captured textures. Hav
ing prior knowledge of the scene and using an appropriate model to represent the 
scene reduces the ambiguities associated with multi-view reconstruction. The three 
approaches described in this section are those of Carranza et al. [29], Starck and 
Hilton [282], and Cheung et al. [43]. 

3.6.1 Free viewpoint video of human actors 

In Carranza et al. 's work [29], an actor's movement is captured using multiple video 
cameras at 15 fps at a resolution of 320 x 240. The cameras are synchronized us
ing an external trigger, and each pair of cameras is controlled by a 1 GHz PC that 
streams the video data directly to disk. The cameras are set up in a convergent config
uration around the actor. They are pre-calibrated so that all the intrinsic and extrinsic 
parameters are known. In addition, the cameras are white-balanced to reduce color 
variation across the different cameras. 
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Fig. 3.15. Overview of free-viewpoint video system for rendering human movement 129], 
Used witli permission (courtesy of Christian Theobalt). 

The graphical overview of their method is shown in Figure 3.15 (eight cameras 
are used here). Each image is processed to produce a binary image of the silhouettes 
of the human actor; this is done by making use of the color statistics of background 
pixels. From the video stream of the background, the mean and standard deviation 
of each background pixel in each color channel are computed. Significant deviation 
from any of the color channel tags the pixel as a foreground pixel. Morphological 
dilation and erosion are then applied to remove isolated noisy pixels. 

The key component of their method is the fitting of their human model to the 
collection of silhouettes. Their human model consists of 16 articulated body parts, 
each of which is represented by a closed triangular mesh. There are 17 joints in the 
model, and 35 parameters are required to fully define the body pose. 

Prior to motion capture, the scales of body parts are initialized by capturing a 
specific pose in which arms and legs are bent. The process of computing the pose 
and body part scales is the same as for motion capture, except that the scales are 
fixed for motion capture. 

The error metric used to extract body pose parameters is the sum of differences 
between the recovered silhouettes and projected silhouettes of the currently estimated 
body pose. Their implementation is based on pixel-wise XOR using the OpenGL 
stencil buffer. Because the silhouette image is binary, a bit-plane of the stencil buffer 
is sufficient to render the result of the overlap between the actual and predicted sil-
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houette. Using an 8-bit stencil buffer and the deptlr buffer, tire error metric for 8 
camera views can be efficiently evaluated in graphics hardware with only a single 
frame buffer read and write. 

The model pose is automatically initialized using a grid sampling of the parame
ter space. For subsequent time frames, the model parameters are computed using a 
non-linear minimization approach. For robustness, Carranza et a/.split the parameter 
estimation problem into a sequence of optimizations (Powell's method) on subparts 
of the body. First, the global translation and rotation is estimated. This is followed by 
estimation of head and hip joint rotations, poses of arms and legs, and finally, hand 
and foot orientation. 

In the rendering step, view-dependent texturing [60] is not used for the reason 
that the geometry extracted is inexact and thus causes blurring. Instead, a view-
independent, consistent texture map is created at every time step. Vertex weights are 
calculated based on the angle between the visible surface normal and viewing vector 
towards the input camera. A weighting function which has characteristics close to 
"winner-take-all" is used to preserve as much detail as possible. 

The renderer takes as input the precomputed model parameters, per-vextex tex
ture weights, and color images from the cameras. It is implemented on NVidia's 
GeForce3 rendering architecture, and is capable of rendering at 15 fps at 320 x 240. 
Sample rendering results can be seen in Figure 3.15. 

3.6.2 Markerless human motion transfer 

Cheung et al. [43] approach differs from Carranza et a/.'s in that Cheung et a/.use a 
more detailed person-specific model (optimized over a sequence of images instead of 
just one) and the use of both silhouette and color information for motion tracking. A 
graphical overview of their technique for reconstructing the human shape, capturing 
the human motion, and transferring it to a different person, is shown in Figure 3.16. 

The first step, kinematic modeling, consists of two parts. The first part involves 
acquiring the shape of the person from a video of the person on a rotating turntable 
using their "shape-from-silhouette across time" (SFSAT) algorithm [44]. The sec
ond part is the estimation of the joint skeleton. This is accomplished by recording 
the subject flexing a joint one at a time using an adapted version of their SFSAT 
algorithm. The human model used has 22 degrees of freedom, which includes global 
translation and rotation. 

The second step is motion capture, and again the shape recovery is accomplished 
using the SFSAT algorithm. The alignment of the human model to the recovered 
shape is done hierarchically, initially by aligning the torso, followed by aligning 
each limb independently. 

In the third step, the captured motion of one person (source) can be directly trans
ferred to another person (target) by passing the joint motions. It is assumed that the 
reference views of the target have been captured for kinematic modeling; as a result, 
the color for a given point on the body surface can be extracted (ignoring occluded 
pixels). For a given time and known body posture, the appearance of each pixel in 
screen space is computed by ray-casting and calculating the weighted average of 
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Fig. 3.16. Overview of CMU modeling and rendering human movement, which includes 
movement transfer. Image (courtesy of Simon Baker and German Cheung) is from "Mark-
erless human motion transfer," by G.K.M. Cheung, S. Baker, I. Hodgins, and T. Kanade, 2nd 
International Symposium on 3D Data Processing Visualization and Transmission, Sept. 2004, 
pp. 373-378. ©2004 IEEE. 

See color plate section near center of book. 

the color from the kinematic modeling step. The weights are determined based on 
proximity of the virtual view to the reference views. 

3.6.3 Model-based multiple view reconstruction of people 

Starck and Hilton [282] also recover human shape from multiple images using a 
human model. There are, however, differences with the approaches of Carranza 
et aland Cheung et al. For example, Starck and Hilton use not only silhouette in
formation, but also stereo correspondences and feature cues. The feature cues are 
manually selected from the image and correspond to projected 3D locations of artic
ulated joints and facial features such as eyes, ears, nose, and mouth. These are used 
to manually align the model to the images. This is a major drawback of the approach. 

The aligned model information is subsequently used to constrain the search for 
stereo correspondence in a coarse-to-fine framework. The shape of the 3D mesh of 
the human is deformed to minimize an objective function that is the sum of the error 
in fitting the silhouette data, the error in stereo correspondence, the error in fitting 
the features, and a regularization term that encourages smooth 3D shape. 

Starck and Hilton use nine cameras, eight of which form 4 stereo pairs that are 
positioned to provide 360-degree coverage of the subject and the ninth camera placed 
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overhead. The cameras used are 3-CCD Sony DXC-9100P cameras, each with PAL 
resolution (that is, 720 x 576). 
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Fig. 3.17. Results of Starck and Hilton's approacVi [282] compared to those of conventional ap
proaches. Top row shows the shape reconstruction results and the bottom row shows rendering 
results. Images (courtesy of Adrian Hilton) are from "Model-based multiple view reconstruc
tion of people," by J. Starck and A. Hilton, International Conference on Computer Vision, Oct. 
2003, pp. 915-922. ©2003 IEEE. 

Results of shape recovery and rendering are shown in Figure 3.17. Notice the im
provements over methods that do not use any model prior. The voxel coloring tech
nique used to produce results shown in Figure 3.17(c) is that of Seitz and Dyer [261]. 
The shapes in Figure 3.17(d) are obtained by fusing multiple stereo depth maps into 
a single surface model through volumetric fusion and iso-surface extraction [133]. A 
view-dependent rendering technique similar to that of Pulli et al. [237] is used. Here, 
view-dependent weighting is done on a per-vertex basis, which favors closer input 
camera views. Multi-pass texturing is used to blend the weighted textures. 

3.7 Layer-based rendering 

The work of Zitnick et al. [349] at Microsoft Research is inspired by Kanade et a/.'s 
Virtualized Reality work [133]. Their system is much more modest in size, as only 8 
cameras are used. However, the cameras used are of higher-resolution (1024 x 768 
at 15 fps). In addition, as opposed to rendering only specific dynamic figures in past 



64 Image-Based Rendering 

work, they render entire dynamic scenes. Photorealism is achieved using a two-layer 
representation that includes matting information. 
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Fig. 3.18. Camera configuration for dynamic scene capture. 

3.7.1 Hardware system 

Figure 3.18 shows a configuration of Zitnick et al.'s video capturing system with 
eight cameras arranged along a horizontal arc. High resolution Firewire PtGrey color 
cameras are used to capture video at 15 fps. With the 8mm lenses used, a horizontal 
field of view of about 30° is obtained. Two "concentrator" units (built by PtGrey) 
are used to synchronize all the 8 cameras and pipe the uncompressed video streams 
directly into a bank of hard disks through fiber optic cables. The two concentrators 
are synchronized using a FireWire cable. 

The cameras are precalibrated using a 36" x 36" calibration pattern mounted 
on a flat plate, which is moved around in front of all the cameras. The calibration 
technique of Zhang [346] is used to recover all the camera parameters necessary for 
Euclidean stereo recovery. 

3.7.2 Image-based representation 

Zitnick et al.choose a two-layer representation inspired by Layered Depth Images 
and sprites with depth [264]. This layer representation is also view-dependent, as 
local geometric proxies have been shown to be effective (e.g., [237, 60, 106]). To 
generate the representation, a stereo algorithm (described shortly) is used to compute 
the dense depth distribution for each image. Depth discontinuities are then detected 
in each depth map; boundary strips (around 8 pixels thick) are created around these 
depth discontinuities. The representation consists of two layers. The first layer is the 
boundary layer B, which has depth, color, and matting information associated with 
the foreground. The second layer is the main layer M , which consists of depth and 
color of pixels not part of the boundary layer pixels, and the background counterpart 
of B (depth and color, with matting information implicitly known from B). Thus, 
the pixel locations of B are a subset of M, with different color, depth, and matting 
information. M covers all the pixels in the image. 
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A variant of Bayesian matting [47] is used to automatically estimate the fore
ground and background colors, depths, and opacities (alpha values) within these 
strips. To reduce the data size, the multiple alpha-matted depth images are then com
pressed using a combination of temporal and spatial prediction. 

Since the cameras are configured along a ID arc, at rendering time, the two ref
erence views nearest to the novel view are chosen, warped, and combined for view 
synthesis. The warped layers are combined based on their respective pixel depths, 
pixel opacity, and proximity of the reference view to the novel view. 

3.7.3 Stereo algorithm 

When developing a stereo vision algorithm for use in view interpolation, the require
ments for accuracy are slightly different from those of standard stereo algorithms 
used for 3D reconstruction. In the work of Zitnick et al., error in disparity is not as 
important as the error in intensity values for the interpolated image, i.e., the synthe
sized view has to be plausible. 

Traditional stereo algorithms tend to produce erroneous results around depth dis
continuities. Unfortunately, such errors produce some of the most noticeable artifacts 
in interpolated views, since they typically coincide with intensity edges. As a result, 
Zitnick et al.use a segmentation-based stereo in the same spirit as Tao et al. [293] 
(planar constraint for each segment) and Zhang and Kambhamettu [344] (segments 
used for local support). 

The stereo algorithm used by Zitnick et aZ.consists of the following steps: 

• Segmentation. For each time frame, each image is first smoothed using a variant 
of anisotropic diffusion [229], then segmented based on color using a variant of 
the mean shift [51]. 

• Extraction of segment matching function. All the camera images are used to ex
tract depth; the global coordinate frame is chosen to coincide with the centrally 
located camera. Each segment is initially assumed frontal parallel (i.e., with con
stant disparity) with respect to this global coordinate frame. The segment match
ing error function is computed in a similar manner as the now-familiar disparity 
space image (DSI) [50]. This error function, called disparity space distribution 
(DSD), is subsequently refined by enforcing a smoothness constraint between 
adjacent segments and a consistency constraint between images. 

• Disparity smoothing. In this step, the frontal parallel assumption is relaxed. This 
is done by iteratively computing local depth averaging, subject to projection con
sistency across images. 

A result of the stereo algorithm is shown in Figure 3.19. Once the disparity map 
has been computed for each of the input images, boundary matting is performed as 
described earlier. 

3.7.4 Rendering 

In order to interactively manipulate the viewpoint, Zitnick et a/, ported their rendering 
algorithm to the graphics processing unit (GPU). Because of recent advances in the 
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Fig. 3.19. Sample results from stereo reconstruction stage: (a) input color image; (b) 
color-based segmentation; (c) initial disparity estimates; (d) refined disparity estimates; (e) 
smoothed disparity estimates. 

programinability of GPUs, they are able to render directly from the output of the 
file decompressor (more efficient version of JPEG) without using the CPU for any 
additional processing. The input to the Tenderer per view consists of 5 planes of data: 
main color, main depth, boundary alpha matte, boundary color, and boundary depth. 

For a chosen virtual view, the nearest two cameras in the data set (say i and i + 1 ) 
are picked. For each camera, the main data Mi and boundary data Bi are projected 
into the virtual view. The results are stored in separate buffers, each containing color, 
opacity, and depth. These are blended to generate the final frame. A block diagram 
of this process is shown in Figure 3.20. 

Camera, 

Render 
main layer 

Render 
boundary layer 

Camera, 

Render 
main layer 

^ 

Render 
boundaiy layer 
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Fig. 3.20. Rendering system: the main and boundary images from each camera are warped 
(rendered) and then blended. 

Each depth map is converted into a 3D mesh using a simple vertex shader pro
gram. The boundary data is fairly sparse, since only vertices with non-zero alpha 
values are rendered. Note that the boundary and main meshes share vertices at their 
boundaries in order to avoid cracks and aliasing artifacts. 
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Once all layers have been rendered into separate color and depth buffers, a cus
tom pixel shader is used to blend these results. The blending shader is given a weight 
for each camera based on the camera's distance from the novel virtual view (similar 
to [61]). It also uses the alpha matte value for blending. 

Figure 3.21 shows four intermediate images generated during the rendering 
process. It shows how the soft alpha-matted boundary elements and view-dependent 
blending are used to create high-quality results. Two more view interpolation results 
are shown in Figure 3.22. As can be seen, the quality of the interpolation is excellent. 

( a ) ( b ) ••:•:•;•• 

(c) (d) 

Fig. 3.21. Intermediate results from rendering stage: (a) rendered main layer from one view, 
with depth discontinuities erased, (b) rendered boundary layer, (c) rendered main layer from 
the other view, and (d) blended result. 

3.8 Comparisons of systems 

We see a wide variety of design decisions made for systems to render dynamic scenes 
in this chapter. There are differences in system setup and camera configuration, types 
of data extracted, scene representation, and rendering algorithm. The rendering algo
rithm used is intimately tied to the representation used, which also affects the render
ing speed. The examples highlighted in this chapter provide us valuable lessons on 
what worked well and what worked less effectively, given the goal of photorealistic 
(that is, artifact-free) dynamic scene rendering. 
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Fig. 3.22. More video view interpolation results: (a,c) input images from vertical arc and (b) 
interpolated view; (d,f) input images from ballet studio and (e) interpolated view. 

3.8.1 Camera setup 

The camera setups range from dense configuration (Stanford Light Field Camera) to 
intermediate camera spacing (layer-based work at Microsoft Research) to wide cam
era distribution (Virtualized Reality'^^). Currently, only the Virtualized Reality'̂ "^ 
camera setup allows almost complete 360 degree range of virtual pan and tilt. How
ever, the wider spacing between the cameras in this system provide more of a chal
lenge in producing locally consistent geometries and hence photorealistic views. This 
is because occlusions become more of an issue and the non-rigid effects associated 
with non-Lambertian surface properties (specularities) are much more difficult to 
deal with. 

A significantly denser camera configuration such as that of the Stanford Light 
Field Camera allows eflfects such as synthetic aperture and focusing [116]. Note that 
synthetic aperture imagery allows objects that are occluded with respect to any given 
camera to be seen. As demonstrated by the Light Field-related approaches for static 
scenes [91, 160], dense sampling permits photorealistic rendering with just either a 
simple planar geometric representation or a rough geometric approximation. How
ever, the disadvantage is the large number of images required for rendering. This 
issue of the image-geometry trade-off was discussed in Chapter 5. The work of Zit-
nick et a/, attempts to reduce the required number of input cameras and compensate 
for this by providing high-quality stereo data. 

Resolution obviously plays an important role in achieving photorealism, but hav
ing a higher resolution will not help if rendering artifacts are not properly handled. 
These artifacts include boundary or cut-out effects, incorrect or blurred texturing, 
missing data, and flickering. Boundary or cut-out effects are caused by mixed fore
ground and background colors in object boundary pixels. Incorrect or blurred tex
turing can be caused by incorrect stereo extraction, occlusion, and non-rigid effects, 
while flickering sometimes occurs if temporal consistency is not accounted for. Un
fortunately, humans are highly sensitive to high-frequency spatial and temporal ar-



Rendering Dynamic Scenes 69 

tifacts. Although using a reduced resolution would conveniently help to mask or 
ameliorate such artifacts, it should never be viewed as a solution or an excuse. 

3.8.2 Scene representation 

The choice of scene representation is critical to the goal of photorealism. Since sur
faces of a real scene tend to be non-Lambertian, using a single extracted 3D geome
try to represent the scene is not recommended. An exception may be if the scene is 
highly structured as in the Fa9ade work on modeling and rendering buildings [61]. In 
such a case, view-dependent texturing on a single geometry may be adequate. How
ever, in general, we think the best choice would be to use view-dependent geome
tries. This has been demonstrated in a number of approaches, such as [237, 60, 
106], with considerable success. 

As Zitnick et a/, have demonstrated, using view-dependent geometries as well as 
extracting the matting (alpha) information at the boundaries and using it for ren
dering have proven to be highly effective. Boundaries need to be handled correctly 
in order to avoid artifacts (blurring and/or cut-out effects), and using matting in
formation has been shown to be effective. The difficulty is in avoiding the manual 
process of indicating the matting areas for subsequent matte extraction. The man
ual component is required in prior matte extraction techniques. Zitnick et a/.use 
depth discontinuities to automatically indicate areas where foreground and back
ground pixel colors exist, and apply an existing technique for matte extraction [47, 
315]. A more systematic technique for simultaneously extracting matte information 
and refining depths at discontinuities uses 3D deformable contours as unifying struc
tures [102]. 

The spatial-temporal view interpolation technique of Vedula et al. [309] is an 
appropriate approach to ensure temporal continuity and thus avoid flickering during 
rendering. Interestingly, Zitnick et a/, showed that it is possible to produce flicker-
free rendering without considering the time domain if the stereo data extracted is 
accurate enough (from the photoconsistency point of view). However, this feat will 
be difficult to replicate for general scenes with significant non-rigid effects such as 
specularities and translucencies. 

3.8.3 Compression and rendering 

While the multiple video streams used in acquiring the dynamic scene results in a 
substantial amount of data, there is a lot of redundancy. How would one capitalize 
on the redundancy? The topic of compressing IBR data is handled in Part III of this 
book, and more specifically in Chapter 13 in the context of dynamic scenes. The 
approaches described in this chapter do not explicitly handle the compression issue 
(except for Zitnick et al.). 

In order for rendering to be real-time, the representation of the scene has to be 
amenable to hardware rendering. In most cases, this means converting the IBR data 
to either a texture-mapped global triangulated 3D model or multi-texturing using 
multiple triangulated depth images. (A depth image contains both texture and depth.) 



70 Image-Based Rendering 

3.9 Challenges 

The challenges delineated for static scenes (Section 2.6) apply for dynamic scenes as 
well. Scene complexity, non-linear effects, ability to edit scenes, and feature corre
spondence all pose serious problems for creating useful representations of dynamic 
scenes. Rendering dynamic scenes has the additional requirement of temporal con
sistency. Solutions to handle temporal consistency exist (e.g., [307]), but they tend 
to rely on the brightness constancy assumption. This assumption is violated for non-
Lambertian surfaces. 
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Fig. 3.23. Data transfer bottlenecks. The worst bottleneck is the DVD reader at IX speed. 

In order for the dynamic scene rendering technology to be feasible, the rendering 
system will have to read from a regular PC hard drive, or even better, from a DVD. 
Compression will thus be part of the critical path to a practical system. As can be seen 
in Figure 3.23, the DVD reader has the worst I/O bottleneck at about 1.35 MB/sec at 
IX speed. The decoder and renderer must also be able to sustain the stream of data 
read from the medium. 

The applications for a dynamic scene rendering system are numerous: games 
(football, hockey), performances (plays, circus acts), instructional videos (martial 
arts, golf), and DVD extras that accompany movie DVDs. The goal of online, real
time photorealistic viewing is very difficult to achieve today. Not only does the I/O 
bandwidth issue have to be addressed, the input video has to be processed in real
time as well. With rapid advancements in processor speeds, compression techniques, 
and other hardware technology, it is just a matter of time before a system capable of 
real-time video acquisition and scene rendering becomes a reality. 



Rendering Techniques 

The previous two chapters on IBR representations show that while dense representa
tions that are image-rich tend to produce more visually-accurate view reconstruction, 
they tend to be fat. Trade-offs have been made to reduce this dependency on the large 
number of image samples with more geometric information; these trade-offs resulted 
in different representations and rendering techniques. 

IMAGE-BASED RENDERING 

f ; 
Reference I 
viewpoints ' Tmns'fr Composite 

Representation 
and Mapping 

Weighting 
Strategy 

j . ^ Target 
I viewpoint 

Fig. 4.1. Goals of rendering: establish mapping between representation and image screen, and 
blend. 

For early image-based representations that are based just on image samples, their 
rendering techniques are simple—they tend to be either just image blending (as in 
panoramas) or interpolation (as in light field). As more sophisticated representa
tions cropped up with different trade-offs between images and geometry, such as 
layered depth images and surface light fields, rendering techniques changed accord
ingly. Graphics hardware has also been exploited to accelerate the rendering process. 
Nonetheless, all rendering techniques have the same goal: to establish a mapping re
lationship between parts of the representation and the screen pixels, and composite 
these parts to produce the virtual view (Figure 4.1). 

In this chapter, we focus on the rendering aspect of IBR. For didactic purposes, 
we revisit the IBR continuum and further categorize it based on the type of render
ing (Section 4.1). Note that the rendering type is not mutually exclusive; the more 
detailed categorization, which we call the geometry-rendering matrix, is created to 
enable us to clearly associate rendering techniques to mapping types. 
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4.1 Geometry-rendering matrix 
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Fig. 4.2. Geometry-rendering matrix. This matrix shows the types of representations (along 
horizontal axis) and rendering (along vertical axis) in IBR. 

We summarize the image-based representations and their rendering methods in 
the diagram shown in Figure 4.2. These methods are discussed in the context of the 
representation of the geometry: no geometry, implicit/explicit, local (or view depen
dent), and global. For the purpose of discussion, we consider the rendering to be 
either point-based, layer-based, and monolithic. There is the special case where no 
geometry is used, which we also discuss. 
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4.1.1 Types of rendering 

Point-based rendering is applied to 3D point clouds (sucii as layered depth im
age [264] and relief texture mapping [216]), or point correspondences (used in tech
niques such as view interpolation [40] and view morphing [260]). Typically, each 
point is rendered independently. In point-based rendering, the target view is typi
cally restricted to be near to the reference view. The point on the reference view is 
usually directly mapped to the target view with no compositing operation. 

Monolithic rendering is done on single pieces of geometry, each of which usu
ally being a contiguous triangular mesh. We refer to such geometry as monolithic 
geometry. The monolithic geometry is rendered as an entire object using texture 
mapping techniques. Therefore, the mapping between the geometry and target view 
can be easily determined through view projection. Since the global geometry is re
constructed from multiple images, the final rendering result is composited from mul
tiple reference colors mapped on the same surface point. This category of techniques 
include view-dependent texture mapping [61], image-based visual hulls [190], opac
ity hulls [191], surface light field [323], Lumigraph [91j, and unstructured Lumi-
graph [22]. Note that the joint view interpolation [162] also falls into this rendering 
category because it divides each reference view by triangles and rendered as an entire 
mesh. 

Layer-based rendering is performed on a layer-by-layer basis, i.e., each layer is 
rendered independently and then composed to produce the final view. A planar geom
etry is usually assumed for each layer, which can be easily rendered as monolithic 
geometry. This category of techniques include layered imposters [255], sprites with 
depth [264], and pop-up light field [270]. Sprites with depth [264] use a view-aligned 
height map to represent the geometry details; they are rendered using techniques as 
discussed in the point-based category. 

These three rendering types operate on representations that range from being con
tinuous (triangle meshes) to fragmented (point clouds). The rendering of continuous 
representations has been well exploited using the conventional graphics pipeline. 
However, it is difficult reconstructing such continuous representations directly from 
image samples. On the other hand, more fragmented representations are significantly 
easier to reconstruct, using 3D scanners or vision techniques such as stereo and 
structure from motion. Unfortunately, fragmented representations tend to be view-
dependent and limited by the input image resolution; occlusion and holes are partic
ularly difficult problems to handle. 

Note that there is one category of rendering techniques that do not require geom
etry information. This category includes QuickTime VR [41], light field [160], Con
centric Mosaics (CMs) [267], and manifold hopping [274]. (Strictly speaking, both 
the 4D light field and CMs do have a geometric proxy, namely the focal plane and 
cylinder respectively, but they do not require any geometric reconstruction.) 

4.1.2 Organization of chapter 

We first discuss the IBR rendering methods using no geometry in Section 4.2, fol
lowed by point-based rendering in Section 4.3. In both cases, we focus on how pixels 
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are mapped from the reference images to the target screen, i.e., the transfer stage. In 
Section 4.4, we discuss monolithic rendering and concentrate on the composite stage. 
Finally, in Section 4.5, we briefly review some layer-based rendering methods, which 
are based on either point-based or monolithic rendering techniques. Throughout the 
chapter, we point out the advantages and disadvantages of each category of tech
niques and possible hardware accelerations; we also consider issues such as discon
tinuity handling, hole-filling methods, and matte handling. 

4.2 Rendering with no geometry 

In this section, we discuss rendering techniques that do not require geometry infor
mation. These techniques organize the reference images in ray space. The mapping 
and composition step of rendering is simply implemented as ray-space interpola
tion. Specifically, each ray that corresponds to a target screen pixel is mapped to 
nearby sampled rays, which are then composited through ray-space interpolation. 
While the details in the rendering depend on the dimensionality and complexity of 
the ray space, these techniques all fundamentally target efficient organization and 
indexing of the reference rays for mapping onto screen space. 

4.2.1 Ray space interpolation 

Recall that the plenoptic function L2J represents the real world in a 7D function 
P-jiVx, Vy, Vz, 6, (j), A, t), given 3D position {Vx, Vy, V^), ray direction (9, (j)), wave
length A, and time t. Rendering a virtual image is equivalent to fitting this function 
using a set of input images and interpolating the function at points corresponding to 
pixels in the virtual image. However, adequately fitting P^ in real world requires a 
large amount of data, which makes data acquisition intractable and impractical. As 
surveyed in Chapters 2 and 3, various techniques have been used to try simplify the 
problem by limiting the degrees of freedom of the plenoptic function. 

Plenoptic modeling [194] reduces P7 into 5D by ignoring the wavelength and 
fime. The light field [160] and Lumigraph [91] representations further simplify P^ 
into 4D by assuming the colors along a ray direction do not change. As a result, the 
rays within an occlusion-free space can be indexed by two-plane parameterization 
as (M, V, s, t), consisting the pixels position (u, v) on the image plane and the ref
erence viewpoint position (.s, t) in the camera focal plane. As shown in Figure 4.3, 
any ray passing through two planes can be indexed by the two intersection points 
and subsequently rendered using quadratic linear interpolation of the neighboring 16 
rays. 

Concentric Mosaics (CMs) [267] further simplifies Pj into 3D by restricting the 
viewpoint to within a 2D planar disc. It captures the plenoptic function with a set 
of multiperspective mosaics, which presents a 360° field view while providing a 
parallax experience when the virtual viewpoint is translated within a 2D plane. Since 
the plenoptic function is represented in a 3D volume by stacking multiperspective 



Rendering Techniques 75 

Fig. 4.3. Light field rendering. 

panoramas, the search of the closest ray can be done efficiently by indexing columns, 
and the rendering can be simplified as trilinear interpolation in the volume. 

Based on a similar representation, manifold hopping [274] (Chapter 14) can be 
regarded as a 2.5D representation since it restricts the viewpoint on a set of discrete 
concentric circles. It provides user experience of comparable quality to CMs, while 
using significantly less data. The rendering of manifold hopping is also simplified to 
2D image warping. 

QuickTime VR [40] is a 2D representation which does not allow viewpoint trans
lation. It captures the plenoptic function from one optical center and allows the vir
tual camera rotating freely to any direction. This technology uses no more data than 
a large field of view image, and provides realistic user experience by simple and 
efficient image warping techniques. 

The major advantage of using no geometry representation is the simplicity of 
its construction. The images are captured without knowing scene geometry. Render
ing consists of simply indexing the sampled (simplified) plenoptic function data and 
interpolating the colors of the neighboring samples. However, this category of tech
niques (with the exception of panoramas and possibly Manifold hopping) usually 
require a large number of images for anti-aliased rendering, which makes such tech
niques less practical. Simple heuristics such as using constant depth manifold (e.g., 
CMs [267], manifold hopping [274]) or an appropriate focal plane (e.g., dynamically 
re-parameterized light field [116]) may improve the rendering quality significantly 
even when the image samples may not be adequate. It has been shown that there is a 
relationship governing the image sample density, geometric proxy errors, and screen 
resolution [33] (Chapter 5). 

4.2.2 Other forms of interpolation 

It is worth noting that interpolation in ray space does not necessarily involve sam
pling only the nearest rays. It is possible to avoid artifacts such as blurring, ghost
ing, and pixelation due to insufficient image samples or incorrectly placed geometric 
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proxy, by using image priors [75]. In this technique, the output texture is constrained 
by local statistics of the input images—in other words, each local patch of the out
put must be similar to some patch in the input image. It is formulated in a Bayesian 
framework where the prior is a collection of 5 x 5 patch samples. Unfortunately, 
the (iterative) energy minimization process is computationally expensive, since it re
quires computing similarity with all sampled patches at every step. A faster version 
using a coarse-to-fine strategy was later proposed [325]. However, despite the two 
orders of magnitude rendering speed-up, it still takes seconds to render an 800 x 600 
frame. 

In the dynamically reparameterized light field [116], rendering can take place 
with a larger support around the target ray to emulate a large aperture optical lens. 
By using this technique of synthetic aperture, varying depths of field appearance can 
be simulated. Objects at the desired depth can be rendered sharply with objects at 
other depths appearing defocused. In addition, variable focus can also be simulated 
by varying the focal plane. For a constant number of cameras, the rendering com
plexity is related to aperture size and generally is 0{N'^), where N is the image 
width in pixels. Ng [212] proposed a method to decrease the rendering complexity 
into 0{N'^ log A'') by Fourier slicing in 4D frequency space. 

4.2.3 Hardware rendering 

Current commodity graphics hardware does not support 4D textures and quadratic 
interpolation. However, they usually support bilinear interpolation of 2D textures. 
Approaches such as [2441 have been devised to exploit ways for rendering the light 
field using conventional graphics hardware. They typically decompose the 4D light 
field into a set of 2D textures, each of which represents a reference view. Multiple 
texture mapping is then used for interpolation. As shown in Figure 4.3, for a virtual 
viewpoint C, all reference view centers are projected onto the image plane of C and 
triangulated. The pixels inside a triangle T are rendered using the textures of three 
reference views corresponding to the three vertices of the triangle. Since the blending 
weight can be computed using barycentric distance, it is possible to use pixel shader 
to composite the three textures with proper weights in a single rendering pass [270]. 
The composition can be done using conventional graphics hardware through multi
pass rendering [277]. 

Barycentric coordinates 

In computer graphics, barycentric coordinates are commonly used to characterize 
points within convex polygons. Consider a set of A'̂  points S = {Pi,..., P/v} and 
consider the set of all affine combinations taken from these points, i.e., P = axPi + 
... + aNPN- P is inside the convex hull of 5 if ai + ... +a iv = 1, with a,; > 0 for all 
i = 1,..., A'̂ . The Ai'-tuple (a i , . . . , ajv) is the barycentric coordinates with respect to 
S. The barycentric weight or distance associated with P , is a,. More properties of 
the barycentric coordinates can be found in Section 13.7 (pages 216-221) in [55]. 
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Fixed function vs. programmable 

The graphics pipeline typically consists of two stages: the vertex processing stage 
and pixel (fragment) processing stage. In conventional fixed-function graphics hard-
Vi'are, the operations in both the vertex processing stage and the pixel processing 
stage are fixed. The user can only change the parameters of the rendering operations. 
More specifically, in the vertex processing stage, the triangle vertices are first trans
formed into camera space before lighting is applied to the vertices. These triangles 
are then projected to screen space and rasterized to pixels. In the pixel processing 
stage, for each rasterized pixel, the color is interpolated from the colors on the tri
angle vertices. Texture mapping is applied to each pixel; using depth comparison 
to remove occluded colors, the final color is obtained by compositing unoccluded 
colors in the color buffer. 

Recent advances in graphics hardware have enabled it to be programmable, giv
ing rise to vertex and pixel shaders. The programmable graphics hardware allows 
the user to customize the rendering process at different stages of the pipeline. Ver
tex shaders manipulate the vertex data values, such as 3D coordinates, normals, and 
colors. 3D mesh deformation can be done using vertex shaders, for example. On the 
other hand, pixel shaders (also known as fragment shader), affect the pixel process
ing stage of the graphics pipeline. They calculate effects on a per-pixel basis, e.g., 
texturing pixels and adding atmospheric effects. Pixel shaders often require data from 
vertex shaders (such as orientation at vertices or light vector) to work. 

4.3 Point-based rendering 

Point-based rendering is applied to representations that are created from 3D point 
clouds or 2D correspondences between reference images. Each point is usually 
mapped independently. Because of this flexibility, object details can be captured 
well. More importantly, point-based rendering is a more natural choice for data ex
tracted using certain geometry acquisition methods such as a 3D scanner or active 
rangefinder, stereo reconstruction, and structure from motion techniques. Excellent 
surveys on point-based rendering can be found in [145,251]. 

Points are mapped to the target screen through forward mapping or backward 
mapping (also referred to as inverse mapping). Referring to Figure 4.4, the mapping 
can be written as 

X := Cr + PrPrXr = Ct + PtPtXt- (4.1) 

Here, Xt and x^ are homogeneous coordinates of the projection of 3D point X on 
target screen and reference images, respectively. C and P are camera center and 
projection matrix respectively, p is a scale factor. Point-based rendering is based on 
(4.1); the direction of mapping depends on which 2D coordinates are evaluated. 

4.3.1 Forward mapping 

Forward mapping techniques map each pixel on the reference view(s) to the target 
view using some form of geometry, e.g., depth map (explicit geometry) or correspon-
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X 

Fig. 4.4. Relationship between 2D points Xr and xt in tlie reference and target images, respec
tively, and 3D point X. On the left shows an arbitrary virtual view while the right shows a 
lateral motion (with rectified geometry). 
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Fig. 4.5. Hole creation with forward mapping, (a) A viewpoint with no holes, (b) zoomed 
viewpoint with holes caused by significant changes in spatial footprint, (c) viewpoint with 
holes caused mostly by depth discontinuities (and missing data). 

dences between views (implicit geometry). Using (4.1), we evaluate Xt-

PtXt = Pf\Cr - Ct) + PrPr'PrX (4.2) 

Since Pt and Ct are known, pt can be computed using the depth of X with 
respect to target camera Ct and focus length ft: pt = (0,0, l/ftV ' Pt'^i^ ^ ^t)-
Therefore, given x^ and Pr, we can compute the exact position of Xt on the target 
screen and transfer the color from av to Xt- This process is called forward mapping. 

Xt is almost always at a subpixel location. If we map pixels from reference im
ages to the target screen using the nearest neighbor scheme, gaps may appear. Un
fortunately, even if xt is exactly at a pixel location, gaps may still appear. There are 
two other possible reasons for the gaps or holes in the target screen: magnification 
and disocclusion. 

A straightforward reason for the occurrence of gaps is magnification due to the 
virtual camera moving closer to the scene. An example of holes created this way can 
be seen in Figure 4.5(b). 
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Splatting techniques [94, 161] have been proposed to handle the subpixel target 
location and alleviate the gap problem caused by the larger target footprint. A filter 
kernel is used to cover an area larger than a pixel to make up for the expected larger 
image footprint for the rendered scene. The shape and size of the kernel depend on 
the spatial relationship between the reference and target cameras and the distance of 
X to the target screen. The Gaussian filter kernel is the most commonly used, and 
the corresponding technique is called the Elliptical Weighted Average [94]. 

Splatting requires a post-processing stage to normalize contributing colors and 
opacities at each pixel. While this can be slow using pure software implementation, 
a recent effort has shown that hardware acceleration is possible [19, 245], speeding 
up rendering by at least an order of magnitude. Unfortunately, splatting tends to blur 
the target image. The work on surfel rendering [231] showed how to choose the 
kernel to achieve necessary hole filling yet avoid over-blurring of the target image. 

Gaps can also occur in the target screen if there is disocclusion caused by depth 
discontinuity in the scene (see Figure 4.5(c)). Such gaps cannot be filled merely 
by splatting because the missing pixels on the target screen are not visible from 
the reference view. A typical solution is to rely on other reference views to fill in 
the missing information. The multi-view technique of Pulli et al. [237] shows how 
multiple textured range data sets are used to generate complete views of objects. 

Apart from the gap or hole problem, we also have to contend with the issue of 
multiple pixels from the reference view landing on the same pixel in the target view. 
In this case, we need to decide which pixel or pixels to use in the final rendering. The 
most straightforward solution is to use the Z-buffer to make this decision. In [237], 
depth thresholds are used to pick the frontmost mapped pixels (whose colors are then 
linearly combined). 

There is a more efficient rendering algorithm that obviates the need for the Z-
buffer, namely the modified painter's algorithm [193]. The modified painter's al
gorithm uses the epipolar geometry to find the order in which pixels are scanned 
(Figure 4.6). This order, interestingly, is independent of the depth of the scene. To 
find the order, the epipole [72] e is first computed by projecting the camera center 
of the virtual view Ct onto the reference camera. If the virtual camera is behind the 
reference camera, we render the pixels away from e; otherwise, we render towards 
e. 

In some cases, forward mapping can be simplified. For example, as shown in Fig
ure 4.4(b), the target camera is a laterally translated version of the reference camera, 
so that scanlines are parallel to the camera offset Ct — Cr- In computer vision, the 
images are considered rectified. Here, p^ = p,. = p — (0, 0 ,1 / / )^ • {X — Cr) and 
Pt — P,. = P. As a result, (4.1) can be simplified to 

Xt = Xr + -P~^{Ct - Cr) = Xr + u{Xr)- (4.3) 

Here, u{xr) is the disparity associated with pixel xv, which is proportional to the 
depth of 3D point X. We can then easily determine the position of xt given Xr and 
its depth on reference image. 
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Reference 

Target 

Fig. 4.6. The modified painter's algorithm can be used for forward mapping without requiring 
the Z-buffer. Left: Target camera is in front of reference (source) camera. Right: Target camera 
is behind the source camera. 

(a) (b) 

Fig. 4.7. Backward mapping from target screen to reference view. 

Another interesting feature of this lateral-translate configuration is that only 
disparity u{xr) is needed for view transfer. This property is capitalized in tech
niques based on implicit geometry (i.e., point correspondences), such as Chen and 
Williams's view interpolation approach [40] and view morphing [260]. Rendering in
volves computing 2D pixel correspondences in the form ofxt = Xr + u{xr), without 
knowing any explicit 3D information. Since mapping occurs along the same scanline, 
rendering can also be simplified to ID splatting. Szeliski and Cohen [290] suggested 
line drawing instead of splatting to fill the gaps. They also introduced a two-pass 
rendering method to reduce the gap filling operation; we describe this method later 
in this section. 
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4.3.2 Backward mapping 

In backward mapping, also known as inverse mapping, the pixel mapping relation
ship is found by tracing the ray from the target view back to the reference view(s). 
Given a pixel on the target screen Xt, we can rewrite (4.1) as 

PrXr = Pr\Ct - C,) + PtPr^PtXu (4.4) 

which can be further simplified to 

Xj. = Hxt + de. (4.5) 

Here, H = R^^Pt defines the 2D planar perspective transformation (also known 
as a homography) from target screen plane to reference camera plane, e is the epi-
pole [72j, and can be obtained by intersecting the line Ct ~ Cr with the reference 
view image plane, d is a scale factor and de defines a line called the epipolar line 
(shown as Ir in Figure 4.7). This line can be obtained by intersecting the reference 
camera plane with the plane defined by Cr, X and Ct (also called the epipolar plane). 

Consequently, given Xt, x^ can be obtained by searching along the epipolar line 
for the pixel that fulfills (4.5) with minimum depth to target camera Ct- This process 
is called backward mapping or inverse mapping. Each pixel on target screen can be 
mapped to an unambiguous location x,- in the reference view, and can be rendered 
through resampling. This ensures that there are no gaps or holes in the target view. 
However, the search yields an invalid result if the pixel at Xt is occluded in the 
reference view. 

In the special case where all 3D pixels are located on a 3D plane, the backward 
mapping process can be implemented as perspective texture mapping. Here, the map
ping reduces to Xr = H'xt, where H ' is defined by Pt, Pr and the location of the 
3D plane. This is supported by current commodity graphics hardware and hence per
formed very efficiently. 

In general, however, the 3D points do not lie on a plane. As a result, backward 
mapping involves a search for d, and is therefore typically slow. In the next section, 
we discuss a special case when the 3D points are reasonably close to a 3D plane, 
enabling a hybrid approach that uses forward mapping followed by backward map
ping. 

4.3.3 Hybrid methods 

Backward mapping involves searching and is typically slower than forward mapping, 
unless the 3D object is a plane, in which case backward mapping degenerates into 
a perspective mapping (which is fast). On the other hand, forward mapping may be 
slowed down by the splatfing process necessary for filling gaps and holes. When the 
geometry is represented as a depth field on the reference camera, forward mapping 
can be performed quickly with simple pixel offset and scanline-based splatting as 
described earlier. 

The approaches in [264, 290] reformulated (4.5) as 
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xt = H ' ( x r + de') = H V J . (4.6) 

As shown in Figure 4.7(b), rendering can be decomposed into two stages (referred 
to as the pre-warp stage and texture mapping stage [216]). In the pre-warp stage, x' 
is rendered using forward mapping from the reference view to an intermediate plane 
that is parallel to the reference camera plane. Since the geometry can be represented 
as a depth field, x[ can be rendered quickly using ID splatting and modified painter's 
algorithm as discussed above. Moreover, in order to make full use of scanline-based 
splatting, Oliviera et al. [216] proposed a two-pass pre-warp process, which forward 
maps from x^ to x[ vertically and horizontally. After the pre-warp stage, the refer
ence image is then warped to a 3D plane—which can then be very quickly mapped to 
the target screen using perspective mapping in the second (texture-mapping) stage. 
The overall performance of the hybrid two-pass technique is significantly better than 
traditional backward mapping. 

There is a cost associated with the hybrid two-pass method: the reference images 
are resampled multiple times before finally rendered on the target screen. This causes 
the rendering result to look slightly blurrier; because of the multiple resampling, the 
filters used need to be more carefully designed. 

4.3.4 Hardware acceleration 

As described above, if the 3D geometry is just a 3D plane, backward mapping 
reduces to perspective texture mapping, which can capitalize on the conventional 
graphics pipeline. In general, however, hardware acceleration is not trivial to im
plement for point-based rendering on graphics hardware. The conventional graphics 
pipeline can be easily used for forward mapping, except for the hole filling process. 
In order to fill in the gaps caused by an increase in the object footprint, each pixel 
from the reference image is typically rendered using a micro facet larger than a 
pixel's area. Some techniques [189] build tiny triangular meshes on the reference 
image before rendering and allow the texture mapping engine to resample the tex
ture and subsequently fill in the gaps. However, this usually involves a large number 
of vertices and is not practical unless top-of-the-line accelerators are used. 

Approaches to hardware-accelerated surface splatting (for general non-planar 
points) are similar in that they involve three rendering passes. The first pass is vis
ibility splatting; here, the object is rendered without lighting to fill the depth buffer 
only. This is followed by the blending pass where colors and weights (alphas) of 
pixels with small depth differentials are accummulated. The final normalization pass 
involves division of the weighted sum of colors by the sum of weights, which can be 
implemented on the GPU (e.g., [96]). 

Coconu and Hege [48] implemented a version of hardware-accelerated splat
ting with restricted shape and size of filter kernels. Ren et a/.[245] implemented 
a hardware-accelerated version of Elliptical Weighted Average (EWA) [94] surface 
splatting; they represent each splat by an alpha-textured quad in the splat rasteriza
tion stage. On the other hand, Botsch et al. [19] use per-pixel Phong shading and a 
simple approximation to the EWA. 
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If the geometry can be represented as a 3D plane plus a small amount of depth 
variation (e.g., sprites with depth [264] and relief texture [216]), the hybrid mapping 
methods discussed in Section 4.3.3 can be used to take advantage of conventional 
hardware acceleration of the projective texture mapping. As shown in Figure 4.8, 
the source image is forward mapped using the depth map to an intermediate texture, 
which can then be fed to a conventional graphics pipeline for final backward mapping 
(traditional texture mapping). 

With programmable graphics hardware, backward mapping using view-aligned 
depth fields can also be accelerated (e.g., real-time relief mapping [233]). In this 
approach, the points are represented as a depth map and stored as texture. For each 
pixel on target screen, the search along the EPI is executed in the pixel shader. After 
finding the point that is projected to this pixel, its texture coordinate is then used to 
index the point color (which is stored in color texture) for final rendering. 
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Fig. 4.8. Relief textures. (Images courtesy of Manuel Oliveira.) (c)2000 ACM, Inc. Included 
here by permission. 
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4.4 Monolithic rendering 

A monolithic geometry is usually represented as continuous polygon meshes with 
textures, which can be readily rendered using graphics hardware. This geometry 
can be obtained from 3D scanners, such as in those featured in the surface light 
field [323] work. Other sources include geometric proxies produced by interactive 
modeling systems (such as Fafade [61]), convex hulls (e.g., visual hulls [190] and 
opacity hulls [191]), and reconstructed by stereo algorithms (such as joint view inter
polation [162], structure from motion algorithms as used in the Lumigraph [91], un
structured Lumigraph [22], and plenoptic modeling with a hand-held camera [106]). 

Rendering polygonal mesh model with textures has been well-explored. (For an 
excellent survey on texture mapping, see [104].) In IBR, view-dependent texture 
mapping (Figure 4.10) is usually necessary for photorealism. The major challenge 
for IBR with 3D polygonal models is in designing the compositing stage where the 
reference views and their blending weights have to be computed. We now describe 
the compositing stage for representations with implicit geometry, followed by the 
compositing stage for representations with explicit geometry. 

4.4.1 Using implicit geometry model 

As mentioned in Chapter 2, view synthesis techniques that are based on implicit 
geometry do not use 3D models. Instead, these technique rely on weakly calibrated 
parameters and feature correspondence to generate virtual views. Examples of such 
techniques include view interpolation [40], view morphing [260], and joint view tri-
angulation (JVT) [162]. There is no Euclidean space representation of rays; reference 
views are usually chosen from the nearest neighboring views, and the weights used 
for blending the reference views are typically computed based on some measure of 
proximity between the virtual view and the contributing sampled view. 

In the case of view morphing [260], the sampled viewpoints are assumed parallel 
with the relative motion being perpendicular to the viewing direction, as can be seen 
in Figure 2.17. The blending weight associated with the sample viewpoint is simple: 
it is inversely proportional to the distance of the virtual viewpoint to the sample 
viewpoint. This is easily seen from Section 2.2.2. The weights are used to blend 
the (warped) reference colors to produce the final virtual view. This strategy can be 
extended to three reference viewpoints as in JVT [162], using barycentric distance 
computed from the target camera position with respect to the three reference views 
in projective space. 

Note that the linear blending strategy is only correct if the two input image planes 
are parallel to each other and parallel to the line defined by two camera centers. If the 
cameras are weakly calibrated in projective space, this condition is not guaranteed 
to hold. However, if the input cameras are close to each other, the linear distance 
assumption usually produces reasonable results. For two views, it is possible to first 
pre-warp (rectify) them to produce parallel image planes, as was done in view mor
phing [260] (see Figure 2.17). 
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4.4.2 Using explicit geometry model 

Reference views \ \ / Reference views 

Target view Nl/Target view 

(a) (b) 

Fig. 4.9. Geometric proxy, and proximity of rays being based on angular distance at the surface 
of the geometric proxy. 

IBR techniques which use explicit geometry (such as 3D surface mesh and depth 
maps) operate in Euclidean space. This makes spatial reasoning about rays easier: 
reasoning about ray and viewpoint proximity and ray-object interaction is more in
tuitive. As mentioned in Chapter 2, having explicit geometry reduces the number of 
input images required for high-quality view reconstruction. This explicit geometry is 
also known as a geometric proxy or impostor. The simplest case is when high preci
sion geometry is available with only a limited number of input images; this is where 
view-dependent texture mapping is appropriate. 

Debevec et al. [61] first implemented view-dependent texture mapping on archi
tectural models in their Facade work. However, rendering required significant per-
pixel computation on the CPU and did not scale well with the number of sampled 
images. Later, Debevec et al. [60] improved the efficiency of rendering substantially 
by precomputing visibility for each polygon and warping the closest textures through 
standard projective texture-mapping. Porquet et al. [234] achieved real-time render
ing by precomputing textures of three nearest viewpoints and applying pixel shading 
on a decimated mesh. 

If an object has a complex appearance (such as specular, glossy, or furry), having 
an accurate geometry but few images will typically be inadequate. To handle specular 
or glossy objects. Wood et al. [323] scanned highly accurate range data and acquired 
hundreds of images at a fixed lighting condition to create the surface light field. 
They used vector quantization and principal component analysis (PCA) to compress 
the data and represent its representation in a piecewise linear fashion. The result is 
a remarkably accurate visualization of the complicated object at interactive rates. 
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Matusik et al. [191] model objects that cannot be scanned accurately, such as objects 
with fur and feathers. They take thousands of images of the object at various poses 
and lighting directions against a plasma display, which acts as a green screen for 
matting. The estimated visual hull (with opacity) is used for rendering. They also 
compress the data by applying PCA on each set of common viewpoints (each set 
with varying illumination). Interpolation is performed over the four closest views. 

In general, however, the geometry used is not always accurate. As Figure 4.9(b) 
shows, the geometric proxy may just be a rough approximation. Chapter 5 shows 
that there is an inverse relationship between how accurate the geometric proxy is and 
how densely sampled the input images should be for alias-free view reconstruction. 

Choosing the rays from the input images to render at a virtual viewpoint is based 
on the notion of ray proximity—we ideally want to choose rays that are "close" to 
the virtual ray. The proximity of rays is not only related to the input viewpoints, but 
also determined by the geometric proxy itself. As shown in Figure 4.9(a), a natural 
strategy is to choose rays with smaller angle deviations with respect to the virtual ray 
on the geometry surface. 

Other strategies for ray selection have been used. In the work of Debevec et 
al. [61], the same set of views are used to render a polygon. For each polygon, the 
weights are computed using the angles between the polygon normal and the viewing 
directions of the sampled views (the smaller the angle, the larger the weight, with a 
maximum of 1). 

Target view 

Reference views 

Polygon 

(a) 

Fig. 4.10. Input view selection strategies, (a) In the work of [61], the weights associated with 
the input (reference) views are inversely proportional to the angle deviation, (b) In the work of 
[ 106], all the input camera centers arc first projected to the target image, followed by 2D trian-
gulation. Each triangle is associated with three input viewpoints corresponding to its vertices. 
These input viewpoints are the "nearest" three cameras for all the pixels that are contained 
within the triangle. 

In [106], the images were obtained by moving the camera approximately within a 
2D plane in a serpentine manner. Their technique for ray/view selection is to project 
all reference camera centers to the target camera and triangulate these points on the 
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Fig. 4.11. Plenoptic modeling using a hand-held camera. Top left: Sample image of the scene 
and depiction of recovered camera poses and 3D points. Top right: View rendered using adap
tive subdivision. A triangle that is considered too large is split into four triangles; the 3D lo
cations of the mid-points of the original triangle are obtained using local depth inaps. Middle 
row: Reduction of ghosting with refined geometry. Bottom row: Illustration of view-dependent 
effect. (Images courtesy of Marc Pollefeys.) 
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target screen (Figure 4.10(b)). For each pixel, the "nearest" three input views corre
spond to the vertices of the triangle that contains it. The blending weights assigned 
to these input views correspond the barycentric coordinates (see Section 4.2.3). View 
synthesis results can be seen in Figure 4.11. 

The ray selection strategy of the unstructured Lumigraph [22] combines a num
ber of properties: use of geometric proxies, epipole consistency (i.e., if a ray passes 
through the center of a source camera, the virtual ray can be trivially constructed), 
matching of resolution, virtual ray consistency (the same ray, regardless of the loca
tion of the virtual camera, should have the same set of "nearest" source cameras), and 
minimum angular deviation. To enable real-time rendering, Buehler et al. [22] com
pute the camera blending only at a discrete set of points in the image plane. These 
points are triangulated, and the dense blend weight distribution is subsequently com
puted through interpolation. 

4.5 Layer-based rendering 

• l* 

(a) (b) 

Fig. 4.12. Planar layers to approximate scene geometry, (a) Planar impostors [131] (courtesy 
of Stefan Jcschke), (b) pop-up light field [270] (also Chapter 16). 

Layered techniques usually discretize the scene into a collection of planar layers, 
with each layer consisting of a 3D plane with texture and optionally a transparency 
map. Two versions of such a representation are shown in Figure 4.12. 

Compared to point-based rendering, layer-based rendering is easier to implement 
using the GPU. The layers can be thought of as a discontinuous set of polygonal 
models, and as such, very amenable to conventional texture mapping (and to view-
dependent texture mapping as well). In addition, compared to monolithic representa
tions, a layer-based representation is usually easier to construct since no connectivity 
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between layers is required. The lack of connectivity information is also a disadvan
tage: it can severely limit where the scene can be viewed. 

Jeschke etal. [131] overcome the limitation in viewpoint range in two ways: use 
layers to represent only far-away portions of the scene (with the nearby parts being 
regular polygon meshes), and make the sets of layers location dependent (with the 
viewspace discretized into separate view cells). The layer representation described 
in [255] also adopts a view-dependent geometry solution; more specifically, when 
target view is too far from the current source views, it automatically generates a new 
set of source views with new layers. Other representations such as the pop-up light 
field [270] use texture synthesis to fill holes in the background layers. 

Layer-based rendering usually consists of two phases. First, each layer is ren
dered using either point-based or monolithic rendering techniques as discussed in 
Sections 4.3 and 4.4, respectively. Subsequently, all rendered layers are composed in 
back-to-front order to produce the final view. 

The painter's algorithm is often used to combine the layers, i.e., the layers are 
rendered from back to front relative to the target image plane. Occlusions are auto
matically handled this way. As with point splatting, the layers can also be rendered in 
an arbitrary order, with the help of the Z-buffer and A-buffer as described in [191]. 
This technique can be used when the order of layers relative to the target view is 
unknown. The layers are rendered to the color buffer with the Z-buffer dictating oc
clusion between layers; meanwhile, the A-buffer accumulates the alpha weights used 
for normalization in the final stage. 

It is worth noting that when rendering a layer with semi-transparency using mul
tiple textures from different source views [270], the colors should be pre-multiplied 
by the alpha value before blending for higher computational efficiency. Wallace [312] 
derived a recursive blending equation in which two semi-transparent images are com
bined to produce another semi-transparent image. Porter and Duff [235] later sim
plified the recursive blending equation by substituting the original colors with colors 
with pre-multiplied alpha. This recursive blending equation is significant for com
positing three or more layers, because it preserves associativity. In other words, 

layeij © (layer2 © layer3) = (layeij © layer2) © layeig, 

with ffi being the compositing operator. Rather than applying a linear operation (e.g., 
scaling) to each of the layers prior to compositing, it is more efficient to composite 
the layers^wf, followed by applying the linear operation on the composited result. 

4.6 Software and hardware issues 

Geometry is often extracted as a means for reducing the number of source images 
required for high-quality rendering. In addition, explicit geometry models can be 
efficiently rendered by conventional graphics hardware. However, the process of re
covering geometry is often performed on the CPU side, which is slow. 
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There is an emerging field on using the GPU to perform non-graphics related 
computation. This field is called "general-purpose computation using graphics hard
ware," otherwise referred to as GPGPU (see [223] and http://gpgpu.org/). As an ex
ample, Yang et al. developed a hardware-accelerated version (using pixel shaders) 
of the plane-sweep algorithm [50] to compute depth at interactive rates with multi
ple cameras [336]. Woetzel and Koch [320] later extended the multi-camera stereo 
system to incorporate shiftable windows and view selection for occlusion handling. 
The technique of [336] uses a winner-take-all strategy to select the depths, which is 
prone to noise. Another attempt on porting stereo algorithms to the GPU is [183] 
where binocular stereo based on a variational deformable model has been shown to 
run in interactive rates. 

The conventional graphics pipeline supports IBR through texture mapping, es
pecially with multi-texture extensions. However, this support is applicable to only a 
subset of IBR representations, and a fair amount of work is required to fully capital
ize on the capabilities of the GPU. Why do not we merely rely on the CPU? While 
CPU speeds are getting faster, memory access speeds remain about the same. Unfor
tunately, IBR techniques tend to be memory intensive—as a result, it is critical for 
IBR systems to have fast memory access. In addition, for a hardware system to be 
more "IBR-compliant," it must be capable of forward mapping. Whitted [316] dis
cussed various IBR-related software and hardware issues, and provided an outline of 
a generic forward mapping processor. 



Part II 

Sampling 

So far, we have introduced various representations for image-based rendering. In the 
second part of the book, we study a fundamental problem in image-based render
ing which we call plenoptic sampling, or the minimum number of images needed 
for anti-aliased image-based rendering. We show different approaches for minimum 
sampling including a spectral analysis based on the sampling theorem (Chapter 5), 
a geometric analysis (Chapter 6) and an optical analysis (Chapter 7). Also included 
in this part is an image-based rendering system called layered lumigraph (Chapter 7) 
that takes advantage of sampling analysis to optimize the rendering performance of 
image-based rendering. 

From a spectral analysis of light field signals and using the sampling theorem, we 
mathematically derive the analytical functions to determine the minimum sampling 
rate for light field rendering in Chapter 5. The spectral support of a light field signal 
is bounded by the minimum and maximum depths only, no matter how complicated 
the spectral support might be because of depth variations in the scene. The minimum 
sampling rate for light field rendering is obtained by compacting the replicas of the 
spectral support of the sampled light field within the smallest interval. Given the 
minimum and maximum depths, a reconstruction filter with an optimal and constant 
depth can be designed to achieve anti-aliased light field rendering. 

Chapter 6 presents a geometric approach to analyzing the minimum number 
of images needed for anti-aliased image-based rendering. In geometric terms, anti-
aliased light field rendering is equivalent to eliminating the "double image" artifacts 
caused by view interpolation. We derive the same minimum sampling rate using geo
metric analysis as using the spectral analysis. Using geometric analysis, however, 
does not require the light fields to be uniformed sampled as in the case of spectral 
analysis. We thus present the minimum sampling analysis for Concentric Mosaics as 
well. 

Chapter 7 shows that the minimum sampling rate for light field rendering can 
also be interpreted using an optical analysis. A light field is analogous to a virtual 
imaging system by defining its depth of field, focal plane, aperture and the circle of 
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confusion. Therefore, the hyperfocal distance of the virtual optical system becomes a 
key parameter for light field rendering because it determines the relationship between 
the spacing of cameras and rendering resolution. 

In Chapter 8, we describe an IBR representation called the layered Lumigraph. 
Given the output image resolution and the rendering platform (e.g., process speed, 
memory, etc.), the layered Lumigraph representation is configured for optimized ren
dering performance. Moreover, it is capable of level-of-detail (LOD) control using 
the image and geometry trade-off from the sampling analysis. 

Additional Notes on Chapters 

Chapter 5 first appeared as an article in ACM SIGGRAPH, July 2000, pages 307-
318. The co-authors are Jin-Xiang Chai, Xin Tong, Shing-Chow Chan, and Heung-
Yeung Shum. 

Most of Chapter 6 first appeared in IEEE CVPR 2000 pages 588-579. The co
authors of this article are Zhouchen Lin and Heung-Yeung Shum. A more complete 
journal version of this paper was later published at the International Journal of Com
puter Vision, volume 58, number 2, July 2004, pages 121-138 by the same authors. 

In Chapter 7, an optical analysis of light field rendering was introduced by Tao 
Feng and Heung-Yeung Shum at ACCV 2002, although part of its analysis first ap
peared briefly in the Plenoptic Sampling paper at ACM SIGGRAPH, July 2000, 
pages 307-318. 

Chapter 8 describes the layered Lumigraph with LOD control, which was origi
nally the subject of the article co-authored by Xin Tong, Jin-Xiang Chai, and Heung-
Yeung Shum in Journal of Visualization and Computer Animation, volume 13, num
ber 4, pages 249-261, 2002. 



Plenoptic Sampling 

This chapter studies the problem of plenoptic sampling in image-based rendering 
(IBR). From a spectral analysis of light field signals and using the sampling theo
rem, we mathematically derive the analytical functions to determine the minimum 
sampling rate for light field rendering. The spectral support of a light field signal 
is bounded by the minimum and maximum depths only, no matter how complicated 
the spectral support might be because of depth variations in the scene. The minimum 
sampling rate for light field rendering is obtained by compacting the replicas of the 
spectral support of the sampled light field within the smallest interval. Given the 
minimum and maximum depths, a reconstruction filter with an optimal and constant 
depth can be designed to achieve anti-aliased light field rendering. 

Plenoptic sampling goes beyond the minimum number of images needed for 
anti-aliased light field rendering. More significantly, it utilizes the scene depth infor
mation to determine the minimum sampling curve in the joint image and geometry 
space. The minimum sampling curve quantitatively describes the relationship among 
three key elements in IBR systems: scene complexity (geometrical and textural infor
mation), the number of image samples, and the output resolution. Plenoptic sampling 
bridges the gap between image-based rendering and traditional geometry-based ren
dering. 

5.1 Introduction 

Previous work on IBR reveals a continuum of image-based representations (see 
Chapter 1 and L155, 134]) based on the tradeoff between how many input images 
are needed and how much is known about the scene geometry. At one end, tradi
tional texture mapping relies on very accurate geometrical models but only a few 
images. In an image-based rendering system with depth maps, such as 3D warping 
[189], view interpolation [40], view morphing [260] and layered-depth images (LDI) 
[264], LDI tree [39], etc., the model consists of a set of images of a scene and their 
associated depth maps. When depth is available for every point in an image, the im-
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age can be rendered from any nearby point of view by projecting the pixels of the 
image to their proper 3D locations and re-projecting them onto a new picture. 

At the other end, light field rendering uses many images but does not require 
any geometrical information. Light field rendering [160] generates a new image of 
a scene by appropriately filtering and interpolating a pre-acquired set of samples. 
The Lumigraph [91] is similar to light field rendering but it applies approximated 
geometry to compensate for non-uniform sampling in order to improve rendering 
performance. Unlike light field and Lumigraph where cameras are placed on a two-
dimensional manifold. Concentric Mosaics [267] reduce the amount of data by only 
capturing a sequence of images along a circular path. Light field rendering, how
ever, typically relies on oversampling to counter undesirable aliasing effects in out
put display. Oversampling means more intensive data acquisition, more storage, and 
more redundancy. Therefore, a fundamental problem in IBR is determining the lower 
bound or the minimum number of samples needed for light field rendering. 

Sampling analysis in IBR is a difficult problem because it involves the complex 
relationship among three elements; the depth and texture information of the scene, 
the number of sample images, and the rendering resolution. The topic of prefiltering 
a light field has been explored in [160]. Similar filtering process has been previously 
discussed by Halle [99] in the context of Holographic stereograms. A parameteriza
tion for more uniform sampling [25] has also been proposed. From an initially under-
sampled Lumigraph, new views can be adaptively acquired if the rendering quality 
can be improved [256]. An opposite approach is to start with an oversampled light 
field, and to cull an input view if it can be predicted by its neighboring frames [107, 
277]. Using a geometrical approach and without considering textural information of 
the scene, Lin and Shum [167] were the first to study the number of samples needed 
in light field rendering with constant depth assumption and bilinear interpolation. 

In this chapter, we study plenoptic sampling, or how many samples are needed 
for plenoptic modeling [194, 2]. Plenoptic sampling can be stated as: 

How many samples of the plenoptic function (e.g., from a 4D light field) and 
how much geometrical and textural information are needed to generate a 
continuous representation of the plenoptic function? 

Specifically, this chapter tackles the following two problems under plenoptic 
sampling, with and without geometrical information: 

• Minimum sampling rate for light field rendering; 
• Minimum sampling curve in joint image and geometry space. 

The plenoptic sampling analysis is formulated as a high dimensional signal 
processing problem. The assumptions made for this analysis are: Lambertian sur
faces, and uniform sampling geometry or lattice for the light field. Rather than at
tempting to obtain a closed-form general solution to the 4D light field spectral analy
sis, we only analyze the bounds of the spectral support of the light field signals. A 
key analysis to be presented in this chapter is that the spectral support of a light field 
signal is bounded by only the minimum and maximum depths, irrespective of how 
complicated the spectral support might be because of depth variations in the scene. 
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Given the minimum and maximum depths, a reconstruction filter with an optimal 
and constant depth can be designed to achieve anti-aliased light field rendering. 

The minimum sampling rate of light field rendering is obtained by compacting 
the replicas of the spectral support of the sampled light field within the smallest in
terval without any overlap. Using more depth information, plenoptic sampling in the 
joint image and geometry space allows a significant reduction in the number of im
ages needed. In fact, the relationship between the number of images and the geomet
rical information under a given rendering resolution can be quantitatively described 
by a minimum sampling curve. This minimal sampling curve serves as the design 
principles for IBR systems. Furthermore, it bridges the gap between image-based 
rendering and traditional geometry-based rendering. 

The sampling analysis was inspired by the work on motion compensation filter 
in the area of digital video processing, in which depth information has been incorpo
rated into the design of the optimal motion compensation filter [295, 84]. In digital 
video processing, global constant depth and arbitrary motion are considered for both 
static and dynamic scenes. Meanwhile, the sampling analysis involves static scenes 
with arbitrary geometries and uniformly sampled camera setups. 

The remainder of this chapter is organized as follows. In Section 5.2, a spectral 
analysis of 4D light field is introduced and the bounds of its spectral support are 
determined. From these bounds, the minimum sampling rate for light field render
ing can be derived analytically. Plenoptic sampling in the joint image and geometry 
space is studied in Section 5.3. The minimum sampling curves are deduced with ac
curate and approximated depths. Experimental results and conclusions are presented 
in Sections 5.4 and 5.5, respectively. 

5.2 Spectral analysis of light field 

5.2.1 Light field representation 

We begin by briefly reviewing the properties of light field representation. We will fol
low the notations in theLumigraph paper [91]. In the standard two-plane ray database 
parameterization, there is a camera plane, with parameter (s, t), and a focal plane, 
with parameter {u,v). Each ray in the parameterization is uniquely determined by 
the quadruple {u, v, s, t). We refer the reader to Figure 2(a) of [91] for more details. 

A 2D subspace given by fixed values of s and t resembles an image, whereas 
fixed values of u and v give a hypothetical radiance function. Fixing t and v gives 
rise to an epipolar image, or EFI [17]. An example of a 2D light field or EPI is 
shown in Figure 5.1. Note that in the sampling analysis, {u, v) is defined in the local 
coordinates of (s, t), unlike in conventional light field where {u, v, s, t) are defined 
in a global coordinate system. 

Let the sample intervals along s and t directions be As and At, respectively. As 
a result, the horizontal and vertical disparities between two grid cameras in the (s, t) 
plane are given by k\Asf /z and k2Atf /z, respectively. Here / is the focal length 
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of the camera, z is the depth value and {kiAs, k2At) is the sample interval between 
two grid points (s,t). 

Similarly, the sample intervals along u and v directions are assumed to be Au 
and Av, respectively. A pinhole camera model is adopted to capture the light field. 
What a camera sees is a blurred version of the plenoptic function because of finite 
camera resolution. A pixel value is a weighted integral of the illumination of the 
light arriving at the camera plane, or the convolution of the plenoptic function with 
a low-pass filter. 

-V 

(b) 

Fig. 5.1. An illustration of 2D light field or EPl: (a) a point is observed by two cameras 0 and 
t; (b) two lines are formed by stacking pixels captured along the camera path. Each line has a 
uniform color because of Lambertian assumption on object surfaces. 

5.2.2 A framework for light field reconstruction 

Let /(M, V, s, t) represent the continuous light field, p(u, v, s, t) the sampling pattern 
in light field, r{u, v, s, t) the combined filtering and interpolating low-pass filter, and 
-i(w, V, s, t) the output image after reconstruction. Let L, P, R and / represent their 
corresponding spectra, respectively. In the spatial domain, the light field reconstruc
tion can be computed as 

i{u, u, s, i) — r{u, v, s, t) * [l{'u, v, s, t)p{u, v, s, t)] (5.1) 

where * represents the convolution operation. 
In the frequency domain, we have 

^\''m ^^v^ ''s) 'H) =̂  .ft(j/„, Uy, i / j , j / t ) (L(j / ( j , iiy, ils, Ui) 

*p{nu,nv.n„Qt)) (5.2) 
The problem of light field reconstruction is to find a reconstruction filter r(w,, w, .s, t) 

for anti-aliased light field rendering, given the sampled light field signals. 

5.2.3 Spectral support of light fields 

In this section, we introduce the spectral supports of continuous light field L(i?u, Q^, Qs, fit) 
and sampled light field L(f2u: ^v, ^s, ^i) * P{^u, ^v, ^s, ^t)-
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5.2.3.1 Spectral support of continuous light field 

The depth function of the scene is assumed to be equal to z{u,v, s,t). As shown 
in Figure 5.1(a), the same 3D point is observed at v' and v in the local coordinate 
systems of cameras 0 and t, respectively. The disparity betvi'een the two image co
ordinates can be computed easily as v — v' = ft/z. Figure 5.1(b) shows an EPI 
image where each line represents the radiance observed from different cameras. For 
simplicity of analysis, the BRDF model of a real scene is assumed to be Lambertian. 
As a result, each line in Figure 5.1(b) has a uniform color. 

The radiance received at the camera position (s, t) is given by 

l{u, V, s, t) = l{u - . •̂ '̂  . , V ~ —Ji—-,0,0) 
Z[U,V,S,t) Z[U,V,S,t) 

and its Fourier transform is 
rOO fOO />00 

L(l?„,f4, i7, ,J?t)= / / / l{u,v,s,t)e'-^''''^dx 
oo J —oo ^ —oo 

e-^^"'''+"'^'>dsdt (5.3) 

where x^ = [u, v] and i?^ = [l?„, i?«]. 
Computing the Fourier transform (5.3) is very complicated and is beyond the 

scope of this book. Instead, we show the analysis of the bounds of the spectral support 
of light fields. Also for simplicity, it is assumed that samples of the light field are 
taken over the commonly used rectangular sampling lattice. 

5.2.3.2 Spectral support of sampled light field 

Using the rectangular sampling lattice, the sampled light field ls{ti, v, s, t) is repre
sented by 

ls{u,v,s,t) =::l{u,v,s,t) Y^ 
ni,n2,ki,k2&Z 

5iu - niAu)6{v - n2Av)S{s - kiAs)5{t - k2At) (5.4) 

and its Fourier transform is 

L(,(j/„, i2,y, Us, Ut) = y 
mi,m2,li,l2&Z 

m. - ^ , a , - ^,^2. ^^,n,^ "§) (5.5) 
Au Av As At 

The above equation indicates that Lg{f2u, Qy, f2g, Q^) consists of replicas of 
L(J?„, f2„, i'2,, (2f), shifted to the 4D grid points 

{27rmi/Au, 2nm2/Av, 2TTh/A.s, 2-n:h/At), 
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where mi, m^, hjh £ Z, and Z is the set of integers. 
These shitted spectra, or replicas, except the original one at rri] = m2 — /i = 

I2 ~ 0, are called the alias components. If L is not bandlimited outside the Nyquist 
frequencies, some replicas will overlap with the others, creating aliasing artifacts. 

In general, there are two ways to combat aliasing effects in output display when 
we render a novel image. First, we can increase the sampling rate. The higher the 
sampling rate, the less the aliasing effects. Indeed, uniform oversampling has been 
consistently employed in many IBR systems to avoid undesirable aliasing effects. 
However, oversampling means more effort in data acquisition and requires more stor
age. Though redundancy in the oversampled image database can be partially elimi
nated by compression, excessive samples are always wasteful. 

Second, light field signals can also be made bandlimited by filtering with an 
appropriate filter kernel. Similar filtering has to be performed to remove the overlap
ping of alias components during reconstruction or rendering. The design of such a 
kernel is, however, related to the depth of the scene. Previous work on Lumigraph 
shows that approximate depth correction can significantly improve the interpolation 
results. The questions are: is there an optimal filter? Given the number of samples 
captured, how accurately should the depth be recovered? Similarly, given the depth 
information one can recover, how many samples can be removed from the original 
input? 

5.2.4 Analysis of bounds in spectral support 

5.2.4.1 A model of global constant depth 

Let us first consider the simplest scene model in which every point is at a constant 
depth (zo). The first frame is chosen as the reference frame, and l{u, v, 0,0) denotes 
the 2D intensity distribution within the reference frame. The 4D Fourier transform 
of the light field signal l{u, v, s, t) with constant depth is 

/

•OO pCG 

/ l{u, V, 0,0)e-^'(^^""+^^""^dudu 
- 0 0 J—00 

0 0 ,. /-OO . 

e ^ '0 "^ ^' as e ^"0 'at 

ZQ ZQ 

where L'{Qu,flv) is the 2D Fourier transform of continuous signal l{u, v, 0,0) and 
5{-) is the ID Dirac delta function. For simplicity, the following discussion will focus 
on the projection of the support of L(i7.u, n,„, f2s,^t) onto the (i7„, Qt) plane, which 
is denoted by L{Qy, Qi). 

Under the constant depth model, the spectral support of the continuous light field 
signal L{Qy, f2t) is defined by a line Qyf /ZQ + Qt =^, as shown in Figure 5.2(b). 
The spectral support of the corresponding sampled light field signals is shown in 
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Figure 5.2(c). Note that, due to sampling, replicas of L{fiy, Qt) appear at intervals 
2-Km2/Av and 2iil2/At in the Qy and Qt directions, respectively. 

Figure 5.6(a) shows a constant depth scene (al), its EPI image (a2), and the 
Fourier transform of the EPI (a3). As expected, the spectral support is a straight 
line.' 

5.2.4.2 Spatially varying depth model 

It is now straightforward to observe that any scene with a depth between the mini
mum z„iin and the maximum z^ax will have its continuous spectral support bounded 
in the frequency domain, by two lines flvf /zmm + ^t = Oand Qyf/z„iax + ^t == 0. 
Figure 5.6(b3) shows the spectral support when two planes with constant depths are 
in the scene. Adding another tilted plane in between (Figure 5.6(cl)) results in no 
variations in the bounds of the spectral support, even though the resulting spectral 
support (Figure 5.6(c3)) differs significantly from that in Figure 5.6(c2). This is fur
ther illustrated when a curved surface is inserted in between two original planes, 
as shown in Figure 5.6(dl). Even though the spectral supports differ significantly, 
Figures 5.6(b3), (c3) and (d3) all have the same bounds. 

Another important observation is that geometrical information can help to reduce 
the bounds of the spectral support in the frequency domain. As will be illustrated in 
the following section, the optimal reconstruction filter is determined precisely by the 
bounds of the spectral support. Furthermore, these bounds are functions of the min
imum and maximum depths of the scene. If some information on the scene geom
etry is available, the scene geometry can be decomposed into a collection of con
stant depth models on a block-by-block basis. Each model will have a much tighter 
bound than the original model. How tight the bound is will depend on the accuracy 
of the geometry. Figure 5.3 illustrates the reduction in bounds, from [zmin, Zm,ax] to 
rnax([z„^i„, ZQ], [-̂ O, ^maxD^ with the introduction of another layer. 

5.2.4.3 A model with truncating windows 

Because of the linearity of the Fourier transform, the spectral support of the EPI im
age for a scene with two constant planes will be two straight lines. However, this 
statement is true only if these two planes do not occlude each other. For synthetic en
vironments, we can construct such EPI images on different layers by simply ignoring 
the occlusion. 

In practice, we can represent a complicated environment using a model with trun
cating windows. For example, we can approximate an environment using truncated 
and piece-wise constant depth segments. Specifically, suppose the depth can be par
titioned as 

z{v) = Zi, for w, < V < ?;j+], i = l,---,Nd 

where Vi and VN,,+I <ire the smallest and largest v of interest respectively. Then 

^ The ringing effect in the vicinity of the horizontal and vertical axes is caused by convolving 
with sm{f2y)/n.„ because of the rectangular image boundary. 
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Fig. 5.2. Spectral support of light field signals with constant depth: (a) a model of constant 
depth; (b) the spectral support of continuous light field signals; (c) the spectral support of 
sampled light field signals. 
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Fig. 5.3. Spectral support for light field signal with spatially varying depths: (a) a local con
stant depth model bounded by Zmin and Zmax is augmented with another depth value zo\ 
(b)spectral support is now bounded by two smaller regions, with the introduction of the new 
line of 2;o. 
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Fig. 5.4. Tliree reconstruction filters with different constant depths: (a) infinite depth; (b) infi
nite depth (aliasing occurs); (c) maximum depth; (d) optimal depth at z,.-

See color plate section near center of book. 
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(a) (b) 

Fig. 5.5. (a) The smallest interval that replicas can be packed without any overlap is 
PmaxPrnin, determined by the highest frequency Kn.„- (b) A spectral support decomposed 
into multiple layers. 

l{v,t) = k{v - ft/zi,0), if w, < u < Vi+i 

and 
iVrf 

L{n„,nt) = ^exp(-j 
.V^+Vi+l 

[a, + QtZrH)) 
i=\ 

ff^v/Zi + fit 
N,i 

J2Q^i^v,fh) 

Ld-Otz,lf) 

(5.6) 

where Li is the ID Fourier transform of li. 
In (5.6), because the function ^ ^ decays fast, and Li{—QtZi/f) also decreases 

fast when \fit\ grows, the spectral support of Qi{Qy, Qt) will look like a narrow 
ellipse. Nevertheless, because of high frequency leak, cut-off frequency should be 
used in the sampling analysis. 

An example of two constant planes in an environment is shown in Figures 5.6(bl) 
(original image), 5.6(b2) (EPI) and 5.6(b3) (spectral support). Note that the shape of 
each of the two spectral supports, i.e., two approximated lines, is not significantly 
affected by occlusion because the width of each spectral support is not too large. 

5.2.5 A reconstruction filter using a constant depth 

Given a constant depth, a reconstruction filter can be designed. Figure 5.4 illustrates 
three reconstruction filters with different constant depths. Aliasing occurs when 
replicas overlap with the reconstruction filters in the frequency domain {Qt and Qy), 
as shown in Figure 5.4(a)(b)(d). Anti-aliased light field rendering can be achieved 
by applying the optimal filter as shown in Figure 5.4(c), where the optimal constant 
depth is defined as the inverse of average disparity dc, i.e.. 

dr 
1 

-) /2. 
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Fig. 5.6. Spectral support of a 2D light field: (a) a single plane; (b) two planes; (c) a third and 
tilted plane in between; (d) a curved surface in between. 

See color plate section near center of book. 
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Fig. 5.7. Effects with truncation along the t direction: (a) truncation in an EPI image; (b) 
truncation effect in spectral support of a constant plane. Note that occlusion can be regarded 
as a special case of truncation as in (a). 

Figure 5.8 shows the effect of applying reconstruction filters with different con
stant depths. As we sweep through the object with a constant depth plane, the aliasing 
effect is the worst at the minimum and maximum depths. The best rendering quality 
is obtained at the optimal depth (Figure 5.8(b)), not at the focal plane as has been 
commonly assumed in light field L160] or Lumigraph [91J rendering. In fact, the 
optimal depth can be used as a guidance for selecting the focal plane. For compari
son, we also show the rendering result using average depth in Figure 5.8(c). Similar 
sweeping effects have also been discussed in the dynamically reparameterized light 
field [116]. 

5.2.6 Minimum sampling rate for light field rendering 

With the above theoretical analysis, we are now ready to address the issue of the 
minimum sampling rate for light field rendering. Since we are dealing with rectan
gular sampling lattice, the Nyquist sampling theorem for ID signal applies to both 
directions v and t. According to the Nyquist sampling theorem, in order for a signal 
to be reconstructed without aliasing, the sampling frequency needs to be greater than 
the Nyquist rate, or two times that of the Nyquist frequency. Without loss of gener
ality, we only study the Nyquist frequency along the J7( direction in the frequency 
domain. However, the Nyquist frequency along the i?^ direction can be analyzed in 
a similar way. 

The minimum interval, by which the replicas of spectral support can be packed 
without any overlapping, can be computed as shown in Figure 5.5(a) 

where 

\PmaxPmin\ = K^JIld = 2nKfJhd 

1 1 

(5.7) 

hd 
^min ^rnax 
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Fig. 5.8. Sweeping a constant depth plane through an object: (a) at the minimum depth; (b) at 
the optimal plane; (c) at the average distance between minimum and maximum depths; (d) at 
the maximum depth. The best rendering quality is achieved in (b). 

and 
Kfjhd = mm{B:, l/{2Av),l/{2Sv)) 

is the highest frequency for the light field signal, which is determined by the scene 
texture distribution (represented by the highest frequency B^,), the resolution of the 
sampling camera (Av), and the resolution of the rendering camera (Sv). The fre
quency B^ can be computed from the spectral support of the light field. Rendering 
resolution is taken into account because rendering at a resolution higher than the 
output resolution is wasteful. For simplicity, we assume §v = Av from now on. 

The minimum sampling rate is equivalent to the maximum camera spacing 

Atmax, which can be computed as 

Atarax = ^ . , • (5.8) 
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The minimum sampling rate can also be interpreted in terms of the maximum 
disparity defined as the projection error using the optimal reconstruction filter for 
rendering. From Equation 5.8, we have the maximum disparity 

At„aJhd/2 = - ^ = max(Z\w, l/(2fi^)). (5.9) 

Therefore, the disparity is less than 1 pixel (i.e., the camera resolution) or half 
cycle of the highest frequency (l/B^ is defined as a cycle) presented in the EPI 
image because of the textural complexity of the observed scene. 

If the textural complexity of the scene is not considered, the minimum sampling 
rate for light field rendering can also be derived in the spatial domain. For example, 
by considering the light field rendering as a synthetic aperture optical system, we 
present an optical analysis of light field rendering in Chapter 7. 

The maximum camera spacing will be larger if the scene texture variation gets 
more uniform, or if the rendering camera resolution becomes lower. By setting the 
higher frequency part of the spectrum to zero so that B^ < l/{2Av), we can reduce 
the minimum sampling rate. One way to reduce B^ is to apply a low-pass filter to 
the input v-t image. This approach is similar to prefiltering a light field (see Figure 7 
in [160]). 

In particular, the minimum sampling rate is also determined by the relative depth 
variation /{z^]^ — z:^^^). The closer the object gets to the camera, the smaller 
the Zmin is, and the higher the minimum sampling rate will be. As / gets larger, 
the sampling camera will cover a more detailed scene, but the minimum sampling 
rate needs to be increased. Therefore, the plenoptic sampling problem should not be 
considered in the image space alone, but in the joint image and geometry space. 

5.3 Minimum sampling in joint image-geometry space 

In this section, we study the minimum sampling problem in the joint geometry and 
image space. Since the CPU speed, memory, storage space, graphics capability and 
network bandwidth used vary from user to user, it is very important for users to be 
able to seek the most economical balance between image samples and depth layers 
for a given rendering quality. 

It is interesting to note that the minimum sampling rate for light field rendering 
represents essentially one point in the joint image and geometry space, in which little 
amount of depth information has been utilized. As more geometrical information be
comes available, fewer images are necessary at any given rendering resolution. Fig
ure 5.9 illustrates the minimum sampling rate in the image space, the minimum sam
pling curve in the joint image and geometry space, and minimum sampling curves 
at different rendering resolutions. Any sampling point above the minimum sampling 
curve (e.g.. Figure 5.9b) is redundant. 
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Fig. 5.9. Plenoptic sampling: (a) the minimum sampling rate in image space; (b) the minimum 
sampling curve in the joint image and geometry space (any sampling point above the curve is 
redundant); (c) minimum sampling curves at different rendering resolutions. 

5.3.1 Minimum sampling with accurate depth 

Given an initial set of accurate geometrical data, a scene can be decomposed into 
multiple layers of sub-regions. Accordingly, the whole spectral support can be de
composed into multiple layers (see Figure 5.5b) due to the correspondence between 
a constant depth and its spectral support. For each decomposed spectral support, 
an optimal constant depth filter can be designed. Specifically, for each depth layer 
i = 1 , . . . , Nd, the depth of optimal filter is described as 

1 = A , : — + ( l - A , ) — (5.10) 

where 

A,- == 
0.5 

Nd 

Therefore, a depth value can be assigned to one of the depth layers z = z-i if 

(5.11) 
—hd 1 1 hd 

The layers are quantized uniformly in the disparity space. This is because per
spective images have been used in the light fields. If parallel projection images are 
used instead, the quantization should be uniform in the depth space [32]. 

Similar to Equation 5.8, the minimum sampling in the joint image and accurate 
depth space is obtained when 

At 1 

Kfjhd 
Nd>l, (5.12) 

where Â ;̂ and At are the number of depth layers and the sampling interval along the 
t direction, respectively. The interval between replicas is uniformly divided into Nd 
segments. 

The number of depth layers needed for scene representation is a function of the 
sampling and rendering camera resolution, the scene's texture complexity, the spac
ing of the sampling cameras and the depth variation relative to the focal length. 
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5.3.1.1 Applications 

Based on the above quantitative analysis in the joint image and depth space for suf
ficient rendering, a number of important applications can be explored: 

• Image-based geometry simplification. Given the appropriate number of image 
samples an average user can afford, the minimum sampling curve in the joint 
space determines how much depth information is needed. Thus, it simplifies the 
original complex geometrical model to the minimum while still guaranteeing the 
same rendering quality. 

• Geometry-based image database reduction. In contrast, given the number of 
depth layers available, the number of image samples needed can also be reduced 
to the minimum for a given rendering resolution. The reduction of image samples 
is particularly useful for light field rendering. 

• Level of details (LOD) in joint image and depth space. The idea of LOD in 
geometry space can be adopted in the joint image and geometry space. When an 
object becomes farther away, its relative size on screen space diminishes so that 
the number of required image samples or the number of required depth layers 
can be reduced accordingly. Zooming-in onto and zooming-out of objects also 
demand a dynamic change in the number of image samples or depth layers. 

• Light field with layered depth. A general data structure for the minimum sam
pling curve in the joint image and geometry space can be a light field with layered 
depth. With different numbers of images and depth layers used, the trade-off be
tween rendering speed and data storage has to be studied. 

5.3.2 Minimum sampling with depth uncertainty 

Another aspect of minimum sampling in the joint image and geometry space is re
lated to depth uncertainty. Specifically, minimum sampling with depth uncertainty 
describes the quantitative relationship between the number of image samples, noisy 
depth and depth uncertainty. It is important to study this relationship because in gen
eral the recovered geometry is noisy as modeling a real environment is difficult. 
Given an estimated depth z^ and its depth uncertainty A\], the depth value should be 
located within the range (zg — Ai]^ z^ -\- Arf). The maximum camera spacing can be 
computed as 

(ze + Ari)(ze — An) niin, z'i — ArP 
At — m n — = ~ - — C^ ^^^ 

In addition, geometrical uncertainty also exists when an accurate model is sim
plified. Given the correct depth ZQ and an esdmated depth Ze, the maximum camera 
spacing can be computed as 

A ZgZo 

Atmax = mm I r. (5.14) 
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5.3.2.1 Applications 

Knowledge about the minimum number of images under noisy depth has many prac
tical applications, such as: 

• Minimum sampling rate. For a specific light field rendering with no depth maps 
or with noisy depth maps, we can determine the minimum number of images for 
antialiased light field rendering. Redundant image samples can then be left out 
from the sampled database for light field rendering. 

• Rendering-driven vision reconstruction. This is a very interesting application, 
considering that general vision algorithms would not recover accurate scene 
depth. Given the number of image samples, how accurately should the depth 
be recovered to guarantee the rendering quality? Rendering-driven vision recon
struction is different from classical geometry-driven vision reconstruction in that 
the former is guided by the depth accuracy that the rendering process can have. 

5.4 Experiments 

Table 5.1 summarizes the parameters of each light field data set used in the experi
ments. Here, it is assumed that the resolutions of the input image and output display 
are the same. It is also assumed that the highest frequency in images is bounded by 
the resolution of the capturing camera. 

Different settings of focal length were used for the "Head," "Statue," and "Table" 
datasets. The focal plane was placed slightly in front of the "Head" object. A smaller 
focal length would have reduced the minimum sampling rate. For the "Statue" scene, 
the focal plane was set approximately at its forehead. In fact, the focal length (3000) 
was set very close to the optimal (3323). Because the "Table" scene has significant 
depth variation, a small camera focal length was used so that each image covered a 
large part of the scene. 

First, various rendering qualities along the minimal sampling curve in the joint 
image and geometry space are compared. They are then compared with the best 
rendering quality obtainable with all images and accurate depth. According to the 
sampling theory (Equation (5.12)), the number of images is inversely proportional to 
the number of depth layers in use. The rendering results corresponding to five dif
ferent image and depth combinations along the minimum sampling curve are shown 
in Figures 5.12(A)-(E). For example, C(7,8) represents the rendering result using 7 
layers of depth and 8 x 8 images. In contrast. Figure 5.12(F) shows the best ren
dering output one can achieve from this set of data: accurate depth and all 32 x 32 
images. The quality of the rendered images along the minimal sampling curve is 
almost indistinguishable^ from that of using all images and accurate depth. 

Figure 5.13(a) compares the rendering quality using different layers of depth and 
a given number of image samples. With 2 x 2 image samples of the "Head," images 

'^ There exists little discrepancy because of the fact that we can not apply the optimal recon
struction filter in rendering. 
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Fig. 5.10. Comparison between conventional light field with 48 x 48 images and rendering 
with 16 X 16 images and 3 bits of depth: (a) artifacts are visible on the left with conventional 
rendering, (b) but not present with additional geometrical information because minimum sam
pling requirement is satisfied. 

(A)-(E) in Figure 5.13(a) show the rendered images with different layers of depth 
at 4, 8, 10, 12, and 24. According to Eq (5.12), the minimum sampling point with 
2 x 2 images of the "Head" is at approximately 12 layers of depth. Noticeable visual 
artifacts can be observed when the number of depth is below the minimal sampling 
point, as shown in images (A)-(C) of Figure 5.13(a). On the other hand, oversampling 
layers of depth does not improve the rendering quality, as shown in the images (D) 
and (E). 

With the minimal sampling curve, we can now deduce the minimum number of 
image samples at any given number of depth layers available. For the Table scene, 
we find that 3 bits (or 8 layers) of depth information is sufficient for light field ren
dering when combined with 16 x 16 image samples (shown in image (D) of Fig
ure 5.13(b)). When the number of depth layers is below the minimal sampling point, 
light field rendering produces noticeable artifacts, as shown in images (A)-(C) of 
Figure 5.13(b). 

Given a single depth layer, the analysis (Equation 5.12) shows that the number of 
images for anti-aliased rendering of the table scene requires 124 x 124 images. Note 
that conventional light field may require even a larger number of images without 
using the optimal depth. This very large set of light field data is due to the significant 
depth variations in the Table scene. This perhaps explains why inside-looking-out 
light field rendering has not been used often in practice. The analysis also shows that 
using 3 bits (8 layers) of depth helps to reduce the number of images needed by a 
factor of 60, to 16 X 16 images. For comparison. Figure 5.10(a) shows conventional 
light field rendering with 48 x 48 images and Figure 5.10(b) shows the rendering 
result with 16x16 images plus 3 bits of depth. Visual artifacts such as double images 
at the edge of the wall are clearly visible in Figure 5.10(a). They are not present in 
Figure 5.10(b). 
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5.5 Conclusion and Discussion 
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Fig. 5.11. Applications of pienoptic sampling: (a) minimum sampling with accurate depth; 
(b) minimum sampling curve in the joint image and geometry space. Application 1: image-
based geometry simplification. Application 2: geometry-assisted image dataset reduction us
ing accurate geometry. Application 3: rendering-driven vision reconstruction. Application 4: 
depth-assisted light field compression with noisy depth. 

In this chapter, we studied the problem of pienoptic sampling. Specifically, by 
analyzing the bounds of spectral support of light field signals, we can analytically 
compute the minimum sampling rate of light field rendering. This analysis is based 
on the fact that the spectral support of a light field signal is bounded by only the min
imum and maximum depths, irrespective of how complicated the spectral support 
might be because of depth variations in the scene. Given the minimum and maxi
mum depths, a reconstruction filter with an optimal constant depth can be designed 
for anti-aliased light field rendering. The minimum sampling rate for light field ren
dering is obtained by compacting the replicas of the spectral support of the sampled 
light field within the smallest interval. The sampling analysis provides a solution to 
overcoming the oversampling problem in light field capturing and rendering. 

We also showed how the minimum sampling curve can be derived through 
pienoptic sampling analysis in the joint image and geometry space. The minimum 
sampling curve quantitatively describes the relationship between the number of im
ages and the information on scene geometry, given a specific rendering resolution. 
Indeed, minimum sampling curves with accurate depth and with noisy depth serve 
as the design principles for a number of applications. Such interesting applications 
include image-based geometry simplification, geometry-assisted image dataset re
duction, rendering-driven vision reconstruction, in addition to depth-assisted light 
field compression, or the minimum sampling rate for light field rendering. 

The analysis in this chapter has used the uniform and evenly spaced camera setup 
as in the original light fields. The minimum sampling rate, however, can be further 
reduced if the cameras can be packed more tightly, as shown by Zhang and Chen 
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in a iiexagon setup [338]. In Chapter 6, we describe a geometrical analysis of light 
fields that is equivalent to the spectral analysis. This geometrical analysis can be 
applied to IBR systems with more complicated camera configurations such as that 
for Concentric Mosaics. 

With plenoptic sampling, there are a number of exciting areas for future work. 
For example, depth is used in this chapter to encode the geometry information. Depth 
is also used in image-assisted geometry simplification. However, surface normal is 
not considered. One can experiment with different techniques to generate image-
assisted geometry simplification using geometrical representations other than depth. 
The efficiency of geometry simplification can be further enhanced by considering the 
standard techniques in geometrical simplification, e.g., visibility culling. 

Current analysis of plenoptic sampling is based on the assumption that the surface 
is diffuse and little view-dependent variance can occur. It is conceivable that view 
dependent surface property will increase the minimum sampling rate for light field. 

Another line of interesting work is on how to design a new rendering algorithm 
for the joint image and geometry representation. The complexity of the rendering 
algorithm should be proportional to the number of depth in use. In addition, error-
bounded depth reconstruction should be considered as an alternative to traditional 
vision reconstruction, if the reconstruction result is to be used for rendering. Given 
the error bounds that are tolerable by the rendering algorithms, the difficulty of vi
sion reconstruction may be alleviated. Such a system, called Layered Lumigraph, is 
described in Chapter 8. 

Focal 
length 

Maximum 
depth 

Minimum 
depth 

{u,v) 
interval 

( s , i ) 
interval 

Pixels 
per image 

Image 
per slab 

Spacing 
ax 

Head 
Statue 
Table 

160.0 
3000.0 
350.0 

308.79 
5817.86 
3235.47 

183.40 
2326.39 
362.67 

0.78125 
15.625 
2.4306 

1.5625 
31.25 
7.29 

256x256 
256x256 
288x288 

64x64 
64x64 
96x96 

4.41 
40.38 
5.67 

Table 5.1. A summary of parameters used in three data sets in the experiments. 
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Fig. 5.12. Minimum sampling curve for the object "Statue" in the joint image and geometry 
space with accurate geometry. Sampling points in the figure have been chosen to be slightly 
above the minimum sampling curve due to quantization. 
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Geometric Analysis of Light Field Rendering 

In the previous chapter, we studied the minimum sampling rate of light field ren
dering and the trade-off between the number of images and the amount of geometry 
information for image-based rendering. In this chapter, we continue our study on 
plenoptic sampling; we now adopt a geometric approach to analyzing the light field 
rendering and its sampling issues. Using a geometric analysis, the first-ever study on 
minimum sampling rates for light fields (and Concentric Mosaics) was presented in 
[167j, and later in [168]. It was shown in [167] that the sampling rate is dependent 
on scene disparity variation and camera resolution. 

We study the artifact of "double image" (a geometric counterpart of spectral 
aliasing), optimal constant depth, and maximum camera spacing from the geometric 
perspective. The geometric analysis is an alternative to the spectral analysis in the 
previous chapter. However, it is also applicable to irregular capturing and rendering 
configurations. For example, the results on Concentric Mosaics [167], which are dif
ficult to obtain using a spectral analysis, can be easily obtained using a geometric 
analysis. 

The remainder of this chapter is organized as follows. Section 6.1 describes the 
criterion for acceptable rendering quality. The minimum sampling rate for Concen
tric Mosaics rendering is studied in Section 6.2. The minimum sampling rate of the 
light field is also studied in Section 6.3. The issue of sampling with occlusion is 
discussed in Section 6.4. 

6.1 Problem formulation 

Before introducing the geometric approach, we describe the assumptions made about 
the camera, scene, and interpolation methods used in light field rendering. 

6.1.1 Assumptions 

The assumptions made in the geometric analysis are as follows: 
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• Camera: pin-hole with a finite resolution. 
• Scene: occlusion-free and Lambertian. 
• Interpolation method: bilinear. 

6.1.1.1 Camera 

The geometric analysis assumes a pin-hole camera model with a finite resolution. 
Thus, the camera records a blurred version of the plenoptic function or the light 
field. A pixel value is a weighted integral of the illumination of the light arriving at 
the camera plane. Alternatively, a pixel value is the convolution of the plenoptic func
tion at the optical center with a low-pass filter. The shape of the filter is compactly 
supported, with the width of support being the angular resolution of camera. Equiv-
alently, the camera simply samples the convoluted plenoptic function at the camera 
center. The value of a pixel is exactly the value of the blurred plenoptic function at 
the direction linking the pixel and the optical center. 

Throughout this chapter, we use uniform angular resolution, in both vertical and 
horizontal directions. Both capturing and rendering cameras have the same resolu
tion. 

6.1.1.2 Scene 

To simplify the geometric analysis, we study the characteristics of the scene element 
and bound its depth. The angular extent of a point is sufficiently small compared 
to the camera resolution, but not zero. Since a scene is composed of points, if every 
point can be correctly rendered, so can the scene. The scene points are first dealt with 
independently (i.e., ignoring occlusion) and the discussion on the sampling problem 
with occlusion is postponed until Section 6.4. The microscopic analysis methodology 
was inspired by common practices in physics where theories are often built on the 
analysis of independent particles and the interaction between particles. Moreover, by 
assuming that the scene is Lambertian, the analysis focuses on the scene geometry 
and ignores the illumination effects. 

approximate 
geometry 

Fig. 6.1. Rendering with bilinear interpolation: the scene point along a ray VP is estimated at 
P and the ray is interpolated using the four nearest rays from cameras at Ci and €2-
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6.1.1.3 Interpolation 

The rendering process involves choosing "nearby" rays for each viewing ray and in
terpolating using them. Therefore, an estimate on the depth along the viewing ray 
is required for ray query. In fact, any approach to find "nearby" rays inherently in
volves an assumption of some scene depth. It is around where the rays intersect. For 
example, infinite depth is assumed in rendering with Concentric Mosaics, because 
interpolation using parallel rays is equivalent to infinite depth. In rendering with the 
light field, the depth is always implicitly assumed to be at the focal plane. 

Usually, the nearest samples are the most important to reconstruct a signal. Bilin
ear interpolation has been commonly used in existing light field rendering systems 
(e.g., [40, 160, 267]) because it is simple and can produce good rendering quality. 
In the presence of more accurate depth information, better rendering results can be 
obtained by interpolating more light rays. 

Figure 6.1 illustrates the rendering process. Suppose that we want to render a 
view at V, and the viewing ray intersects the approximate geometry at P. Ci and 
C2 are two nearby positions of the camera that are closest to VP, and CiDij {i = 
1,2; j = 0,1) are nearby rays in camera Cj that are closest to the ray CiP. Then 
the pixel value of VP can be bilinearly interpolated from rays CiDij, e.g. [326], by 
assigning weights Wij to rays CiDij in the following manner: 

LVPC2 • IPCiDn IVPC2 • LPCiDw 
•^10 = , T . n ^ — T T T T T ^ T ^ ' " ' l l 

IVPCx + IVPC2 IVPCi + IVPC2 '' 
IVPC, • IPC2D21 LVPCi • IPC2D20 

^"20 = , T / n ^ , / T A n ^ ' ' ^ 2 1 = 
ivpCx + 1VPC2 ivpCi + 1VPC2 • 

6.1.2 Anti-aliasing condition 

In this section, we investigate the visual artifacts caused by rendering with interpo
lation and inaccurate depth. We show that the anti-aliased light field rendering is 
equivalent to eliminating "double images" for each scene point. 

Widening of intensity contribution after interpolation 

We first consider within-view (intra-view) interpolation. As shown in Figure 6.2(a), 
camera Ci is taking a snapshot of a point L. CiDio is the nearest sampling ray to 
CiL while CiDn and C1D12 are two nearby rays. Figure 6.2(b) maps the intensity 
contribution of L as a function of camera angular position, where 

• the vertical line at 0 represents the ray C^L, 
• (5 is the angular resolution of the camera, 
• the parabola-like curve is the intensity contribution of L in the continuous case 

(or the shape of low-pass filter for the blurred plenoptic function), 
• and CiDio is displaced by angle £ (—| < e < | ) from CiL. 
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As a result, the contribution of L to the pixel that corresponds to the ray CIDIQ 

is just the value of the continuous contribution at e. Since the angles of C\Dii and 
C1D12, corresponding to e — ̂  and e-\-5 in Figure 6.2(b), respectively, are outside the 
interval of [—|, | ) , neither intensities of the two corresponding pixels are affected 
by the point L. Subsequent to linear interpolation, the intensity contribution of the 
point L becomes a wedge of width 25. However, it is the width, not the shape of the 
intensity contribution, that matters. 

Suppose Ci is one of the nearby cameras to the novel view V (Figure 6.3(a)), 
CiL intersects the approximate geometry at Pi, and VPi intersects the focal plane 
at Li. Then the part of the contribution of L to the novel view, transferred by camera 
Ci, centers around Li (Figure 6.3(b)). 

approximate 
geometi'y 

(a) 

contribution of i 

f + S angle (b) 

Fig. 6.2. The change of intensity contribution, (a) The camera C\ is imaging a scene point L. 
(b) The intensity contribution of L changes from parabola-like to wedge-shape due to finite 
camera resolution and linear interpolation. 

Rendering quality vs. geometry information 

Now we consider the between-view (inter-view) interpolation. As shown in Fig
ure 6.4(a), Ci and C2 are two nearby cameras, V is the novel view, and L is the 
scene point of interest. Suppose dL intersects the approximate geometry at Pi and 
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focal plane 

A contribution of L 
VD,, Vl' VO,„ VD, 

(a) 

(b) 

Fig. 6.3. Using the rays in camera Ci generates a wedge of intensity contribution around Li 
in the novel view. 

VPi intersects the focal plane at L^ {i = 1,2). Then around Li lie two intensity 
contributions of the point L (Figure 6.4(b)) on the plane. 

The contribution of L to the viewing rays is interpolated between these two inten
sity contributions. Obviously, the rendering quality depends on the distance between 
them. In Figure 6.5, the relative positions between the two intensity contributions 
are shown, where the horizontal axis represents the angular position of the rays in 
view V and the vertical axis represents the amount of contribution. The thick vertical 
dash-lines represent the viewing rays. When they nearly overlap (Figure 6.5(a)), there 
is only one pixel strongly influenced by L. So L will appear sharp on the rendered 
image. When they partially overlap (Figure 6.5(b)), then L contributes to two consec
utive pixels and L will become blurred. When they no longer touch (Figure 6.5(d)), 
some viewing rays can fall in the gap between them. If the contrast between L and its 
neighborhood is large, the intensities of in-between viewing rays are different from 
the intensity of L. As a result, there will be two separate images of L on the rendered 
image. This phenomenon is the "double image" artifact. 

The distance between the two intensity contributions is dependent on the sam
ple spacing and the geometry, so is the rendering quality. When the sample spacing 
becomes larger and larger, or when the geometry information becomes less and less 
accurate, the rendered point gradually changes from being sharp to being blurry and 
further to becoming a double image artifact. The double image artifact is a result of 
an inadequate sampling rate. 
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approximate 
focal plane geometry 

(a) 

4 contribution of i 
I 

(b) 

Fig. 6.4. Bilinear interpolation generates two wedges of intensity contribution around Li and 
1/2. Double images of L may appear on the rendered image if the two wedges do not overlap. 

Strictly speaking, the change from being sharp to having double images is contin
uous. Nevertheless, the condition of two intensity contributions touching each other 
(Figure 6.5(c)) is a critical one. 

When is rendering quality acceptable? 

We now consider the circumstances under which a rendered image is considered 
acceptable. A rendered scene point may either be sharp, be blurry, or have double 
images. Sharpness is certainly what we desire. Thus it is important that we make a 
distinction between blurring and double images. 

The phenomenon of double images has also been observed by Levoy and Hanra-
han [160] and Halle [99]. Double images are the most salient and visually disturbing 
artifact, particularly when the sampling rate is low. Human perception is more tol
erant to blurring than to double images. People are accustomed to seeing blurred 
objects in photos, which correspond to off-focus locations. It stands to reason that 
an object should only appear blurred with no double images should the geometry be 
inaccurate. 

The above human perception has been summarized by the causality principle in 
scale-space theory [70], i.e., no "spurious detail" should be generated when smooth
ing an image. The light field rendering should obey this principle because both the 
intra- and inter-view interpolations are smoothing processes on a single image. The 
intra-view case is obvious. For the inter-view case, under the Lambertian premise and 
ignoring the visibility problem, the value of every pixel on the interpolated image can 
be computed by weighting several pixels on only one of the images chosen for in-
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k contribution of i 

A contribution of Z, 

angle (a) 

L, Lj angle ^^y 

k contribution of Z. 

(c) 

angle (j) 

Fig. 6.5. The rendering quality depends on the distance between the two intensity contribu
tions. The viewing rays are indicated by the thick vertical dash-lines, (a) When the intensity 
contributions are very close, the rendered point appears sharp, (b) When the intensity contri
butions partially overlap, it looks blurred, (c) That the two intensity contributions meet their 
ends is the critical condition that double images may occur (d) Double linages may occur 
when the two intensity contributions do not overlap. 
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terpolation. The weighting template is pixel-dependent, but it is still a smoothing 
operation because all the weights are non-negative. As a result, blurring is harmless 
but double images should be eliminated. 

From the viewpoint of signal processing, light field rendering is a reconstruction 
process of a 4D signal. When the sampling rate is inadequate, aliasing shows up as 
double images on the rendered image. Indeed, we can prove that eliminating double 
images in the geometric viewpoint (or the overlap between two successive intensity 
contributions on the focal plane) is equivalent to the anti-aliasing condition in the 
viewpoint of signal processing. 

First, we show the equivalence between the constant overlap of the wedge-shape 
intensity contributions in discrete images and the constant overlap of those in contin
uous ones (the parabola-like curve in Figure 6.2(b)). On one hand, it is apparent that 
the overlap of continuous intensity contributions guarantees the overlap of discrete 
intensity contributions (Figure 6.6(a)). On the other hand, as shown in Figure 6.2(b), 
if the offset e of one of the intensity contributions is close to —5/2 and the other off
set is close to (5/2, then the overlap of these two wedge-shape intensity contributions 
requires that the two parabola-like ones at least touch each other (Figure 6.6(b)). In 
fact, the transfer from (6.15) to (6.16) in Section 6.3.1 has demonstrated such equiv
alence. 

angle (a) 

angle (^^^ 

Fig. 6.6. Equivalence between types of overlap, (a) The overlap of parabola-like intensity con
tributions ensures the overlap of wedge-shape ones, (b) The overlap of wedge-shape intensity 
contributions at an extreme case implies the overlap of parabola-like ones. 

Next, we prove that the constant overlap of parabola-like intensity contributions 
is equivalent to the anti-aliasing condition in the frequency domain. For a point at 
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depth Zo, its perceived velocity in the video is f/zo [332], where / is the focal 
length. Using a constant depth Z is equivalent to estimating its velocity at f/Z. 
The parabola-like intensity contributions from other frames backprojected from the 
constant-depth plane to the current frame are the predicted positions of the point, 
using the estimated velocity f/Z. So the actual intensity contribution and the pre
dicted one must overlap. From Figure 6.7(a), in spatial-temporal domain, the "time" 
duration d must satisfy 

d\.f/zo-f/Z\<A, (6.1) 

in order to ensure the overlap, where A = Sf is the sample spacing on the focal 
plane. 

Now let us consider the anti-aliasing condition in the frequency domain. The 2D 
light field is parameterized by t and v, where t is the "virtual time". Since the actual 
velocity is constant, the spectrum of the point is simply a slant line segment, with the 
highest frequency in v being l/(2z\) [295]. Using the estimated velocity is equiv
alent to using a motion-compensated reconstruction filter to reconstruct the video. 
The filter is a parallelogram shown in Figure 6.7(b). Then the anti-afiasing condition 
is that the spectrum of the video must completely lay inside the parallelogram as we 
have shown in the previous chapter, or 

l/{2d)>l/{2A)\f/zo~f/Z\. 

We see that the above inequality is identical to (6.1). 
In conclusion, rendering quality is acceptable when all objects in the rendered 

image appear either sharp or blurred. No double images are allowed. 

6.2 [Minimum sampling rate of Concentric [Mosaics 

6.2.1 Review of Concentric Mosaics 

Concentric Mosaics form a 3D plenoptic function by collecting all rays from a rotat
ing camera on a plane [267]. At each rotation angle, an image with multiple verticle 
lines is captured. The nth Concentric Mosaic is created by putting together the rtth 
verticle lines in all the images captured. Concentric Mosaics index all input image 
rays naturally in 3 parameters: radius, rotation angle and vertical elevation. It has 
been shown that any novel view inside the visible region can be rendered without any 
3D reconstruction. As shown in Figure 6.8, a camera swings on the circle 5*1. And a 
constant-depth circle (or cylindrical surface) S2 is assumed for rendering. To render a 
novel ray (e.g., OP2), first we find its intersection point (P2) with the constant-depth 
surface. Then two nearest rays (C1P2 and C2P2) from nearby cameras (Ci and C2) 
are interpolated to generate the rendering result. 



124 Image-Based Rendering 

actual signal 
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£2„=-(Z//)£2, i 
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l/(2A) 

\J/(2</) 

a, 

(b) 

Fig. 6.7. The anti-aliasing conditions in the spatial-temporal domain and spectral domain, (a) 
In the spatial-temporal domain, the condition is the overlap of parabola-like intensity contribu
tions, (b) In the frequency domain, the condition is that the motion-compensated reconstruc
tion filter contain the entire spectrum of the video. 

Fig. 6.8. Geometry for Concentric Mosaics. 
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ofl„ op^ oa^^ OP. OD, 

»;2+4+'S' >h ii*s'2 rii+e'^-S' ti^+e\+5' 1) tj + S, 7i+£, £,'-<?' 

Fig. 6.9. Double images happen when two wedges do not touch: the angle between successive 
positions of the camera is too wide or the point is too far from the constant-depth surface. 

6.2.2 Minimum sampling condition 

We now move from the cylindrical coordinate in Figure 6.8 to Figure 6.9, where the 
horizontal axis represents the angle of the ray starting from the cylinder center O, 
the two wedge-like intensity distributions of the point L might not overlap if Ci and 
C2 are not sufficiently close and L is not near 52- As shown in Figure 6.9, 

1. 7/j is the position of OPi, 
2. Tji + e\ is the position of O A o . where CiDm is the nearest ray (see CiDio in 

Figure 6.2(a)) to dL viewed from Ci (to save notation, we assume that Dij {i = 
1,2; j = 0,1,2) are on ^2), and 

3. rji + e'i ± S' are positions of ODn and ODi2 (see CiDu and C1D12 in Fig
ure 6.2(a)) respectively, 

where s'^ is the angle between OPi and ODn), and 6' is the angle between ODio and 

In this case, if r ;2+£2^^ ' > 'rji+e'i+S', when the viewer is at O and the viewing-
rays are indicated by the thick dashed-lines in Figure 6.9, the rendered image of the 
point L will appear double. 

Therefore, to avoid double images, that r/2 + £2 ~ S' < rji + e'j + 5' must be 
fulfilled, or equivalently 

m m <e' i-4+2(5' . (6.2) 

This is the condition when L is outside 5*2- If L is inside ^2, it becomes 

rii-ri2<e'2-e[+2S'. (6.3) 

Because L is random, both (6.2) and (6.3) must be fulfilled. Furthermore, £[ —62 
can take an arbitrary value in [—6', S'). Therefore, the final condition to avoid double 
images is 

\m^m\<s'. (6.4) 

^ Note that since 5 is extremely small and the FOV of the camera is fairly small, these four 
angles are nearly equal. 
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6.2.3 Lower bound analysis 

Referring to Figure 6.8, suppose in polar coordinate L = [p, (j)), Ci = (r, 0), C2 
(r, 9), P2 = {R,'(}), then r; satisfies: 

R sin ry — r sin 6* R cos r] — r cos 0 
f) sin (p -~ r sin 6 p cos 0 — r cos 0 ' 

since P2 is on the hne C^L. The above equation can be written as: 

1 1 1 
- sin(r/ — 4>) sin(r/ — 0) ~ — smiO — (j)). 
r p R 

(6.5) 

Because the angle of the point is between two successive positions of the camera, the 
three angles -q — <j),ri — 6 and 9 ~ 4> are all small, (6.5) can be linearized to: 

r p 
\ie~<l>). 

Hence 

V 
p{R^r] •{R - p)6 

R{p - r) 

Therefore, for successive positions of the camera (with same R, r, <p and p), 

\Ar]\ = \rii -r/al 
•̂  - 1 
4—Ae 

(6.6) 

(6.7) 

Next, we set out to find the relationship between 6' and 5. Referring to Fig
ure 6.10, for the triangle AOCQ, using the law of sines, we have 

R \CQ\ 
sinyp' simp sm{ip — (p')^ 

(6.8) 

Again, because (p is relatively small (typically \ip\ < f^, and | sin 75 — fg | < 0.0052) 
and (p' < (p, the above relation can be linearized as 

\CQ\ R 

(p' ip (f ~ cp' 

hence \CQ\ ^ R — r. Therefore, the relationship between 8' and 5 is 

PQ \CQ\5 R~r, 
5' 6 = {1 

R R R 

Combining (6.4), (6.7) and (6.9), we obtain: 

R 
)5. (6.9) 

\^0\< 
R 1 

5. 
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Fig. 6.10. The relationship between S and 5'. 

If the depth of the point L is constrained between A and B (r < A < p < B and 

A < R < B), then the maximum value of ,t_i) 

m • 

( ' ? ~ i ) ( i f - i ) 

A ^^ H 
R ^ R 

IS 

1 - — 
^ R 

l ' £ _ l 
(6.10) 

Therefore a bound for the number of pictures is: 

2-Km 

where \x\ denotes the smallest integer not less than x. 
On the other hand, since the FOV of the camera is limited, the patches that every 

picture projected onto the cylinder must cover the cylinder, otherwise the bilinear 
interpolation could not be properly carried out. Accordingly, the number of pictures 
should also be larger than: 

'2TT' 
No 

$ 

where <P = ^FOV — arcsin (-̂ j sin (^^FOV)) , using the second equality in (6.8). 
Finally, the lower bound we attain is 

N = max{Ni,N2}. (6.11) 

Note that we are not saying that if the number of pictures is greater than N then 
the visual quality will be acceptable. Rather, if the number of pictures is less than 
A'̂  then even the simplest scene with only a point could not be properly rendered. 
The theoretical lower bound should be higher than the one we have deduced above. 
However, when the scene becomes more complex, one might not notice too much 
artifact due to the characteristics of human vision. Consequently, the actual lower 
bound will not deviate too much from the one we estimated. The above analysis 
only considers the horizontal resolution; increasing the vertical resolution does not 
improve the minimum sampling rate. 
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6.2.4 Optimal constant-depth R 

Instead of simply choosing constant-depth R = ^^^^, (6.10) can guide us to find 
a better constant-depth R, such that m is minimized, and the number of pictures 
required becomes smaller. Such an R satisfies 

R -̂  „ R t 

^~l 

2AB iA^B)r 
A + B ~2r 

One can easily check that A < R < ^ ^ ^ , and the equalities hold only for A = B. 
This choice of R is reasonable because closer objects will be distorted more and thus 
need more accurate depth information. 

One should be cautious to provide relatively accurate minimum and maximum 
depths so that the computed optimal constant depth can really take effect. Fortu
nately, this is not a difficult task to measure them. Moreover, since B > A, R is 
much less sensitive to B. Therefore, only the minimum depth needs to be accurate. 

It is interesting to rewrite (6.12) as: 

2 1 1 
+ R~r A-r B ~r 

which means that the optimal constant depth is exactly the harmonic mean of the 
minimum and maximum depths. It is also worth noting that such choice of R can 
make the objects at the minimum depth and the maximum depth be rendered equally 
sharply. 

6.2.5 Validity of bound 

1. If the scene is truly at a constant-depth, e.g., a painted cylinder, then A = B = 
R. In this case N = N2, which is true. 

2. If the scene is infinitely far away, let R chosen as (6.12), then 

When A ~i 00 and B -^ oo,m -^ 0. Again A'" = N2, which is also true. 
3. If r -> 0, then the Concentric Mosaics will reduce to a panorama, and the num

ber of pictures needed is Â 2- In this case, m ^ 0 and N = N2. The lower bound 
is correct again. 

4. The above examples are all extreme cases. The geometric analysis has also been 
verified with real data. Figure 6.11 illustrates the top view of a real scene. The 
scene is enclosed by an ellipse and the center of the camera rig is placed near one 
of the focal points of the ellipse. The scales are labeled in the figure. The radius 
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of the rig is 1.7m. The horizontal FOV of the camera is 43° and each picture 
taken by the camera is 360 pixels by 288 pixels. Then A = 3.4, B = 16.6, 
r = 1.7, and <J = -H) • jfo ~ liso- ^° achieve the best quality, R is chosen 
as (6.12), thus R = 4.75. Then N = 1329. Figure 6.12 is a panoramic view of 
part of the scene. Figure 6.13 compares the details between the rendered scenes 
with two different sampling rates. We can see that when the number of pictures 
is 1479, the scene is rather satisfactory, while clear double images appear in the 
scene reconstructed from 986 pictures. In this experiment, the lower bound we 
computed is fairly accurate. 

Fig. 6.11. Top view of a real scene that is used to capture Concentric Mosaics. The center of 
camera rig is placed at the dark dot. 

6.3 Minimum sampling rate of light field 

We now study the minimum sampling rate for light field rendering without any geo
metric information. Specifically, we analyze the maximum allowable distance be
tween successive camera locations by assuming a globally constant depth for render
ing. Note that the interpolation method used in the original light field rendering [160] 
implicitly assumes a globally constant depth at the focal plane. 

6.3.1 Maximum camera spacing 

Without loss of generality, we set up a coordinate system as in Figure 6.15, where 

\. L — [XQ, ZQ) is a point in the scene, 
2. Ci and C2 are two adjacent cameras, and 
3. CiDio and C2D20 are two rays in the light slab that are nearest to CiLi and 

C2L2, respectively. 

The global constant-depth plane, at a depth Z, is parallel to but might not be identical 
to the focal plane. This resembles a dynamically reparameterized light field [116]. 
We omit the projection from the constant-depth plane to the focal plane of the novel 
views as they are parallel. 

We now examine the intensity contribution of L on the constant-depth plane in 
Figure 6.15. The details are shown in Figure 6.16, where 
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Fig. 6.12. Part of a panoramic view of a real scene. 

Fig. 6.13. A close-up view of the scene reconstructed: from 986 pictures (top) and 1479 pic
tures (bottom). 
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Fig. 6.14. Top view of the light slab in the lion light field. The constant-depth is implicitly 
assumed to be on the st plane. 
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Fig. 6.15. Rendering a point L with a light field. 
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Fig. 6.16. The details of the intensity contributions of L on the constant-depth plane. The 
horizontal axis indicates the ray position and the vertical axis represents the intensity value of 
the rays. 
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1. Xi is the coordinate of L,; [i = 1, 2) on the constant-depth plane, 
2. Xi + fij is the coordinate of DIQ, where CiDio is the nearest samphng ray to CiL 

viewed from Ci, and 
3. Xi + ei± A are the coordinates of Dn and Di2, respectively, 

in which Cj is the offset between Li and Dio, and A = 5Z is the sample spacing on 
the constant-depth plane. 

To avoid double images, the two wedge-shape intensity contributions of the point 
L must overlap. Hence, Du must be on the left of D22, or 

Xi+e'i-A<X2 + e2 + A, (6.14) 

It is easy to compute that the coordinates of Li and L2 are: 

.xi = —a + Z{xo + a)/zo, and X2 = a + ZixQ — a)/ ZQ, 

respectively. Therefore, (6.14) becomes 

2a{Z — ZQ) 

-^ ^ < 2/4-t-(62 ~ e i ) . (6.15) 

Since the position of L is arbitrary, 62 — ei can vary between —A and A. Therefore 
the following condition must be satisfied: 

' " ( ^ " ^°) < A. (6.16) 

The above condition is deduced when ZQ < Z. If ZQ > Z, the corresponding condi
tion is 

2a{zo - Z) ^ ^ 

Summing up, the sample spacing must satisfy: 

d = 2 a < A - - ^ = 8 . ^ ^ ^ . i6Al) 
\ZQ - Z\ \ZQ - Z\ 

If ZQ is bounded between z,Tiin(< Z) and Zmax(> •^). then the minimum value 
of the right hand side of (6.17) is the maximum allowable distance between two 
locations of the camera, namely 

t^rnax = 5 m l n 
2 m i u < « 0 < « n 

\ 1 ^ ^ = (5^ • mm <̂  , ^6.18) 

We may rewrite (6.17) as 

1 1 
d<5. 

ZQ Z 

This means that when Z is the estimate of exact depth, the disparity error viewed 
from nearby cameras must not exceed one pixel. Since (6.18) is the minimization of 
(6.17) over all scene points, it means that if the globally constant depth Z is chosen 
for the scene, then the sample spacing should ensure that the disparity errors of all 
scene points between successive views must not exceed one pixel. 
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6.3.2 Optimal constant depth 

(6.18) indicates that dmax is maximized when Zopt satisfies: 

•^opt ^min ^max -^opt 

or 

^opt = JZ, • (^-^^^ 

One can easily check that Zmin < ^opt < ^(^miii + -̂ max), and the equalities hold 
only for z^jn = Zmax- This choice of Zopt is reasonable because closer objects re
quire more accurate depth information. 

One should be cautious to provide relatively accurate minimum and maximum 
depths so that the computed optimal constant depth can really take effect. Fortu
nately, it is possible to estimate or measure them in practice. Moreover, Zopt is less 
sensitive to Zmax than to Zmin-

6.3.3 Interpretation of optimal constant depth 

It is interesting to note that (6.19) can be rewritten as: 

1 _ 1 /̂  1 _J^ 
^opt ^ V^min ^ m a 

In this formulation, the optimal constant depth is exactly the harmonic mean of the 
minimum and maximum depths. (6.19) can also be written as: 

1 1 1 1 

'^rniii '^opt ^opt ^max 

This implies that the nearest and farthest objects can be rendered with equal sharp
ness. 

The optimal constant depth can be determined graphically. Referring to Fig
ure 6.17, where 

1. Cj (i = 1,2) are on the camera plane, 
2. F is the mid-point of C1C2, 
3. L and V are the farthest and the nearest points in the scene, and 
4. C2I/' intersects C\L at L\ and C\L' intersects C^L at Li-

Then it is guaranteed that L1L2 is parallel to C\C2- From projective geometry 18J, 
one can prove that {L, E, L', F} is a harmonic set of points, where E is the inter
section point of LL' and LiLi- Therefore 

\EL\-\FL'\ __ 
\FL\ • \EL'\ 
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which gives 
(^n ZjZmin 

1. 

Thus this is a convenient way of finding the optimal constant depth Zopt-
With the optimal constant depth, the sample spacing in (6.18) becomes: 

(6.20) 

It is totally determined by the disparity variation of the scene and the camera resolu
tion. The above equality can also be written as: 

1 1 
= 25. 

This means the maximum allowed sample spacing should make the disparity varia
tion of the scene between successive cameras be 2 pixels. 

Fig. 6.17. Graphical determination of the optimal constant depth. 

6.3.4 Prefiltering the light field 

Let the sample spacing be d. If this sampling rate is inadequate, i.e., d > dmax-
where dmax is given by (6.18), then it is necessary to prefilter the light field in order 
to eliminate the artifact of double images. As mentioned by Levoy and Hanrahan 
[160], the prefiltering can be done on the camera or focal plane, or both. Filtering 
on the focal plane reduces the image resolution, whereas filtering on the camera 
plane reduces the depth of focus [116]. It is easy to see that the size for focal-plane 
prefiltering should be d/d^^^ pixels, and the focal-plane prefiltering can be done 
more conveniently by postfiltering on the rendered images. However, in theory the 
camera-plane prefiltering cannot be effective because the samples are not taken after 
low-pass filtering the camera plane. 
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6.3.5 Disparity-based analysis 

135 

In fact, the minimum sampling rate can be found by simply observing the maximum 
and minimum disparities in pixels in two captured images, without any measurement 
over the scene or any camera calibration. So do rendering and prefiltering. 

Suppose the maximum and minimum disparities found in two images are Nj^^^^ 
and A î̂ ;„ pixels, respectively. From Section 6.3.3, we know that the sampling rate 
must make the maximum disparity difference in the scene be 2 pixels. Because the 
disparity variation is proportional to the sample spacing, the sampling interval should 
be shrunk by (A^^ax "̂  '^min)/2 times so that the disparity variation is 2 pixels. 
Therefore A'' = cei\{{N,^^^ — A^min)/2) + 1 sample images are required for the 
interval between the two cameras. 

The rendering can also be done conveniently with epipolar images [33], where 
a global motion compensation vector is needed for picking out appropriate pixels 
in different sample images and blending among them. The optimal constant depth 
now corresponds to the optimal motion compensation vector, which is (A ,̂̂ i„ + 
N^^^)/{2{M — 1)) pixels between successive sample images, where M is the num
ber of sample images uniformly taken in the interval. 

Finally, the size of prefiltering is (TV^^x - •^min)/(2(-W - 1)) pixels. 

6.3.6 Experiments 

Table 6.1. The data for the Hght field "Toy." 

st samphng 
rate 

610x455 

-' m i n 

27 

^ ' i n a x 

59 

minimum 
sampling rate 

17x17 

optimal 
const, depth 
1.3721«n,m 

We now verify the geometric analysis described in the previous sections. In the 
"Toy" light field, two images were captured with a large distance between them. For 
these two images, the minimum and maximum disparities are 27 and 59 pixels, re
spectively. We then know that (59—27)/2+l=I7 images are required for the interval. 
The relevant data are listed in Table 6.1. Figure 6.18(a) is one of the sample images. 
In order to detect the existence of double images, sharp features, which appear as thin 
vertical lines, are added to the scene. The upper and lower boxes are at the maximum 
and minimum depths, respectively. 

First, the effectiveness of the optimal constant depth was tested. With the optimal 
constant depth chosen at 1.3721zmin^, the light field can be correctly rendered with 
equal sharpness at Zmin and Zmax (Figure 6.19(b)). If the opdmal constant depth is 
not chosen, e.g., if the mean depth at 1.5926zniin is used instead, the scene points at 
^min appear to be very blurry (Figures 6.19(c)), though those at Zmax look sharper. 

^ The optimal motion compen.sation vector is (59+27)/(2x(17—1))=2.6875 pixels between 
successive sample images. The real value of 2;,nin is insignificant. 
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Second, the sufficiency of the minimum samphng rate was tested. When the sam
pling rate doubles, the visual improvement is nearly unnoticeable (Figures 6.19(b) 
and (d)). However, when the sampling rate is reduced by half, double images are 
clearly visible at both Zmjn and ^max (Figures 6.19(e)). 

Third, the effectiveness of the prefiltering size was tested. The double image 
effect in Figures 6.18(e) disappeared when a prefiltering size of 2 pixels on the focal 
plane was chosen (Figures 6.19(f)). However, the rendered image became blurred. 

6.4 Dealing with occlusion 

In previous sections, the scene is always assumed to be occlusion-free. In a real 
scene, occlusion always exists and sampling with occlusion must be analyzed. 

Occlusion destroys the desirable scene property that all scene points are visible 
from all views. It is easy to see that in general the spectrum of a light field with 
occlusion is not bandlimited, thus demanding the reconstruction of a completely 
artifact-free (in the sense of signal reconstruction) light field from discrete samples 
is impossible for a complex scene. Therefore, the minimum sampling rate of a scene 
with occlusion can only be found according to how much aliasing is tolerable. In 
practice, there is no visually unacceptable artifacts when scenes with occlusion are 
rendered at the minimum sampling rate for occlusion-free scenes. Ignoring occlu
sion effects, all scenes with the same disparity variation theoretically share the same 
minimum sampling rate. 

Unfortunately, the minimum sampling curve no longer exists for scenes with 
occlusion. As shown in Figure 6.20, under the Lambertian premise, if there is no 
occlusion in the scene, interpolating C\P\ with C2P2 is equivalent to interpolating 
CiPi and C3P2. or C4P2, etc., because the pixel values of rays C2P2, C3P2, etc., are 
identical. This is the basis for different combinations of sampling rate and geometry 
information producing the same rendering result. On the other hand, if occlusion 
exists, the pixel values of rays C2P2, C3,P2, etc., may not be identical. Therefore 
interpolating CiPi with C2P2 is not equivalent to interpolating CiPi and C3F2, or 
C4P2, etc.. As a result, the sampling rate cannot be traded for geometry information. 
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(e) (f) 

Fig. 6.18. The sample and rendered images of the light field "Toy." (a) A sample image of the 
light field "Toy." The vertical lines in the white boxes are for the detection of double images, 
(b) The rendered image from 17 x 17 images, (c) The same as (b) with the mean constant 
depth chosen, (d) Rendered from 30 x 30 images, (e) Rendered from 9 x 9 images, (f) Image 
(e) prefiltcred with size of 2 pixels, (b), (d)~(f) all use the optimal constant depth. 
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'b< 

(f) 

Fig. 6.19. Blow-up of the sampling and rendered images of the light field "Toy.' 
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Fig. 6.20. Only in an occlusion-free scene can the sampling rate be traded for geometry infor
mation, (a) When the scene is occlusion-free and Lambertian, the interpolation between Cj Pi 
and C2P2 is equivalent to those between CiPi and CiP-z, and between CiPi and C4P2, 
etc.. Therefore, different combinations of sampling rate and geometry information can give 
the same rendering result, (b) When occlusion exists, interpolating CiPi with C2P2 is not 
equivalent to interpolating CiPi and C3P2, or C4P2, etc. Therefore different combinations 
of sampling rate and geometry information cannot produce the same rendering result. 



Optical Analysis of Light Field Rendering 

We studied plenoptic sampling using a spectral analysis and a geometric analysis in 
the previous two chapters. In this chapter, we present an optical analysis to determine 
the minimum sampling rate for light field rendering. A light field can be considered 
as a virtual optical imaging system. Analogous to a real optical system, we can de
fine the optical parameters of the light field rendering system, such as the depth of 
field, the aperture, the circle of confusion and the hyperfocal distance' of the virtual 
imaging system. 

7.1 Introduction 

Treating light field rendering system as a synthetic optical system is not entirely 
new. The original light field system regards the sampling interval as the aperture 
[160]. Aperture filtering has also been proposed. Isaksen et al. [116] presented a 
dynamically reparameterized light field by changing the synthetic aperture (i.e., the 
number of cameras) and the focal planes for environment. Kunita et al. [ 149] used 
"equivalent depth of field" to characterize the maximum acceptable depth variation 
in a standard constant depth light field rendering system by measuring the fidelity of 
the synthesized images. 

The optical analysis quantitatively describes the relationship among three key 
elements in light field rendering: the scene complexity, the number of images, and the 
output resolution. Not only does the optical analysis allow us to compute the required 
number of images for anti-aliased light field rendering given output resolution, it 
also allows us to deduce how much geometrical information is necessary if the input 
image number is insufficient. Therefore, the optical analysis can be applied to guide 
the design of image-based rendering systems. 

Based on the optical analysis of the virtual imaging system, we describe the re
lationship among the depth variation of the scene (depth of field), the constant depth 

^ In photography, the hyperfocal distance is the distance setting that produces the greatest 
depth of field. It has also been defined as the point of focus where everything from half that 
distance to infinity falls within the depth of field. These definitions are synonymous. 
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(perfectly focused plane), the spacing of cameras (aperture) and the rendering reso
lution (circle of confusion). Specifically, the hyperfocal distance of the virtual opti
cal system, as a key parameter for light field rendering, determines the relationship 
between the spacing of cameras and rendering resolution. Given the minimum and 
maximum depths of the scene, the optimal constant depth and the hyperfocal distance 
are derived to achieve the best rendering quality or minimum number of images. The 
minimum number of images required for anti-aliasing rendering (i.e., the rendering 
error is smaller than the circle of confusion) can be further reduced by segmenting 
the depth into multiple depth layers. A quantitative relationship between hyperfocal 
distance, number of layers, and depth variation of the scene is described. 

While similar results on the minimum sampling rate/curve of light field rendering 
have been obtained in the previous two chapters through geometric analysis and by 
a spectral analysis of 2D plenoptic function, the optical analysis from this chapter is 
more intuitive to understand. 

The remainder of this chapter is organized as follows. In Section 7.2, we discuss 
an ideal thin lens imaging system and introduce a conventional image formation 
model commonly used in computer graphics and computer vision. In Section 7.3, 
we formulate the light field rendering system as a virtual optical system, and de
fine its optical parameters. Furthermore we describe the imaging law of the constant 
depth rendering of the light field system. Then, we present the optical analysis and 
study the relationship among the elements of light field rendering system. Optimal 
constant depth and the minimal sampling rate are deduced in Section 7.4. Moreover, 
the optimal depth segmentation to extend the depth of field and the trade-off between 
the amount of geometrical information and the number of images needed is studied. 
Concluding remarks are given in Section 7.5. 

7.2 Conventional thin lens optical system 

7.2.1 Ideal thin lens model 

Figure 7.1 shows the basic image formation geometry of a conventional thin lens 
optical system. With the perfectly converging thin lens and the aperture diameter A, 
all light rays radiated from an object point P (on the object plane) that pass through 
the aperture are refracted by the lens to converge at the point Q on the image plane. 
One can view the lens imaging system as transforming each point in the scene to a 
single focused point behind the lens. For the thin lens, the relationship between the 
object distance O, focal length of the lens / , and the image distance / is described 
by the Gaussian lens law: 

1 1 1 
7 = 0 + 7 ^'-'^ 

Each unoccluded point on the object plane is projected onto a single point on the 
image plane, causing a focused image to be formed. The film (or sensor) plane must 
coincide with the image plane to record a sharp image. Points in front of object plane 
and behind object plane are not focused perfectly and therefore are distributed over 
a patch (blurred image) on the film plane. 
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A 

Fig. 7.1. A conventional thin lens imaging system with focal length / and aperture A. An 
object P at distance O away is filmed at point Q on the image plane. 

aperture 

Fig. 7.2. The depth of field of a conventional optical system is defined by the distance between 
points Pi and P2, which are filmed on the image plane with the diameter of circle of confusion 
d. The point P is perfectly focused. 

7.2.2 Depth of field and hyperfocal distance 

As shown in Figure 7.2, the point displaces from the object plane image as a circle of 
confusion (CoC) on the film. The diameter of the circle of confusion C is determined 
by the congruent triangles formed by the rays passing through the aperture, i.e., 

A 
I' 
1 

7 ' 
1 

7'~ 

c 
\\i~n 
1 1 

= 7 + 0 
1 1 

(7.2) 

(7.3) 

(7.4) 
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(7.5) 

where O' and / ' are the object distance and image distance of the point. (In Fig
ure 7.2, either Oi or O2 can be O'; similarly for /'.) 

The C in (7.5) can be computed as 

In practice, films have a finite resolution. Films cannot resolve details smaller 
than the minimum grain separation of the film emulsion (or pixel size of CCD). 
Points with the circle of confusion smaller than the resolution of film are "in focus." 

The depth of field (DOF) is defined as the total range of in focus zone, namely 

where d is the maximum acceptable circle of confusion. 
The nearest and farthest points that are acceptable are found at the distances, 

respectively, where 

dii = ^7^ (7.10) 
d/f 

is the hyperfocal distance [11], or the ratio of diameter of aperture to maximum 
acceptable angular blur. The depth of field is then computed as 

2dHOiO - / ) 
DOF = Of~On= , 2 ; ^ •',(,. (7.11) 

7.3 Light field rendering: An optical analysis 

7.3.1 Overview of light field rendering 

The sampling of the 4D plenoptic function in light field [160] and Lumigraph [91] 
can be represented by a two-plane parameterization. A ray passing through a light 
slab, as specified by a line connecting a point on the {s,t) plane and another point 
on the (u, v) plane, can be uniquely determined by a quadruple {u, v, s, t). A pinhole 
camera is adopted to capture the light field with the center of projection located on 
the (s,i) plane (camera plane). 

To render a given ray, the line parameters {u,v, s,t) is computed and then the 
light slab is resampled and interpolated by a certain bandpass filter to reconstruct the 
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Fig. 7.3. The ray interpolation of the light field rendering: The desired ray (u, s) is interpolated 
by the nearest neighboring rays (ui, si),(wi, S2), (u2, sj), and {u2, S2). 

desired ray. The 2D case of interpolation is illustrated in Figure 7.3, We refer the 
reader to the original light field and Lumigraph papers for more details. 

For the sake of simplicity, we now discuss light field rendering in 2D space. 
As shown in Figure 7.4, cameras are aligned so that their centers of projection are 
located on the t axis with the same intervals D. To render novel view images, a virtual 
rendering camera C with infinite resolution is placed on the desired viewpoint behind 
the t axis at a distance / . Assume that there is only one ideal object point Q [11, 
1671 in the scene, which is placed Z units in front of the t axis. 

7.3.2 Imaging law of light field rendering with constant depth 

A constant depth plane that is closer to the object is selected to improve the rendering 
image quality. With the constant-depth assumption, all the rays captured by cameras 
are hypothesized emitted from points located on the constant depth plane, which is 
parallel to the camera plane. Figure 7.4 illustrates the 2D case of light field rendering 
process. The constant depth line is defined to be parallel to the t axis. Let us denote 
the distance between the constant depth line and t axis by Zc- The virtual rendering 
camera is located behind the t axis with distance / . The rays captured by the cameras 
Ci through Cj are employed in rendering. Recall that, for constant depth assumption, 
all rays captured by the camera is hypothesized as being emitted from a point lying 
on the constant depth plane. To camera d, the ray emitted from Q is hypothesized 
as being emitted from a virtual point Qi, which is the intersection of constant depth 
plane and the ray (C,, Q). Thus, on the novel view image, the ray {Ci, Q) is rendered 
as image point Qi, which is the image of virtual point Qi. Similarly, for the camera 
C j , Q is rendered as QJ . 

Accordingly, the light field rendering system with constant depth correction can 
be considered as a virtual optical system, whose imaging law is described above. The 
points Qi and qj are called the image points of the object point Q. Only the points 
exactly on the constant plane are perfectly in focus. 
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Fig. 7.4. Light field rendering with constant depth assumption. The rendering error \qi — qj\ 
incurred by the constant depth assumption (Zc) is projected by \Qi — Qj\. d and Cj are 
neighboring capturing cameras, while C at the bottom is the rendering camera. 

In Figure 7.4, from the congruent triangles AQQiQj and AQCiCj,vjc have the 
following relationship: 

\Z, ~- Z\ 

\Q • Q l 
(7.12) 

where Za is the constant depth, Z is the depth of the object point Q. 
From the congruent triangles ACQiQj ACqiqj, we have 

\Qi Zr 

m - Qj I / 
(7.13) 

where qi and qj are the virtual points on the constant depth line corresponding to 
cameras Cj and Cj, respectively. Also, / is the focal length of the virtual rendering 
camera C. 

Substituting (7.13) for (7.12), we have 

/ 
Z Z, + I' 

\C., — Ck (7.14) 

(7.14) is the basic equation of the light field rendering that describes the quanti
tative relationship among the key elements of light field system and rendering image 
quality. From the above analysis, we can consider a light field rendering system as 
a virtual optical imaging system, whose imaging process depends on the constant 
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depth assumption and rendering algorithm. Levoy and Hanrahan [160] suggested 
that the light field rendering system be considered as a discrete aperture imaging 
system, with the diameter of the aperture being equal to the spacing between camera 
locations. Similarly, a discrete aperture camera has also been discussed in [ 149]. In 
this section, however, we will derive important qualitative properties of the virtual 
optical system of light field rendering, much like the conventional thin lens optical 
system. 

7.3.3 Depth of field 

As shown in previous section, in the light field rendering system, images of an ideal 
object point could be more than one point on the desired image plane. To alleviate 
the aliasing, pre-filtering and post-filtering are applied by Levoy and Hanrahan. In 
the optical analysis, it is equivalent to blurring the image points to avoid the double 
image [167]. In this subsection, we will determine the depth variation range of scene, 
where the rendered image is spread less than a given length for all object points. From 
(7.14), we define the acceptable rendering quality as the largest range of \qi ~ qj\. 
That is, 

\q^-q^=^•^i^f\C^'C,\<d, (7.15) 

where d is a predefined acceptable rendering quality (rendering resolution). 
We define the aperture of the virtual optical system as ^ ' = \Ci — Cj\, or the 

distance between two consecutive cameras. The nearest and farthest depths whose 
diameters of blurred circle are within d are specified as two solutions of (7.15): 

(7.16) 

(7.17) 

where 

^min 

7 

DHZC 

DH + {I + Z,) 

DH 

DH-

DfjZc 

- (/ + z,)' 

A' 
~~ d/f 

(7.18) 

We can easily verify that, for all Z (Zmin 1^ Z < Z^ax)^ lit — Ijl < d h 
satisfied. Therefore, the depth of field (DOF) of the virtual optical system is defined 
as the acceptable range of focus. That is, 

2DHZ,{I + Z,) 

Dfj - (/ + z^y 

The geometrical interpretation of (7.19) is illustrated in Figure 7.5. Z^ is the 
distance from the constant depth plane to U axis, Z^i„ and Zmo.x are the minimum 
and the maximum depth ranges for acceptable rendering quality. Note that the object 
points lie on Z„,t„ and Z^-^ax planes cause the same circle of confusion on the desired 
image. Figure 7.6 shows the depth of field variation due to changes in D// and Z^-
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Fig. 7.5. The acceptable range (depth of field) of light field rendering, given the tolerable 
rendering error (circle of confusion). 
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Fig. 7.6. (a) The relationship between depth of field and constant depth with given hyperfocal 
distance; (b) The relationship between the hyperfocal distance and the depth of field with a 
fixed constant depth. 

7.3.4 Rendering camera on ST plane 

A special configuration of light field rendering is of particular interest, when the 
rendering camera is located on the same plane with the capturing cameras ((s, t) 
plane), as shown in Figure 7.7. Substituting / = 0 for (7.14), we have 

\Zc -Z\ f 

Z Zr 
\Ci - Ck\ (7.20) 
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Fig. 7.7. When the rendering camera is located on the capturing camera plane, the light fielding 
rendering system becomes an ideal thin lens optical system. Objects lying on the constant 
plane are perfectly focused on the image plan. The focal length of the virtual lens is / ' = 

As illustrated in Figure 7.7, we assign the image distance the focus length / of 
the rendering camera C, the object distance is the constant depth Zc- Then an virtual 
focus length / ' of the optical system is obtained by the Gaussian law (see (7.1)), 

/ ' 
Zcf 

Zc+f 

Substituting (7.21) for (7.20), we have 

/ ' \Zc 
Qi\ 

f 
'\Ci~Ci\ 

(7.21) 

(7.22) 

Notice that (7.7) has exactly the same form as that of (7.22). Therefore, when the 
rendering camera is located on the (s,t) plane, a light field rendering system with 
constant depth correction can be regarded as an ideal thin lens imaging system. 

We can also verify that the depth of field has the same form as that of (7.11): 

Z', DOF 
2DHZI 

Dl~Z^ 

2zlA'f/d 2d'i,z,iz, ^ n 
{A'f/df - zl d'l - (ze - / ') / ^ 2 • 

(7.23) 

where d'j^ = A'f'/d. 
In summary, analogous to the conventional optical system, the key elements of a 

light field can be defined in term of a virtual optical system: 
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• Aperture. A' = |C,; - Cj \ 
• Focal length. / ' = 7 ^ 
• Hyperfocal distance, d'^ = A' f /d 

. Depth of field. z'ooF = ^ M i ^ ; , ' / ' / . 

In the virtual optical system, the aperture is defined as the intervals of cameras. 
Object distance is the distance between object point and (,s, t) plane. Image distance 
is the distance between rendering image plane and (s,i) plane. Focal length is de
fined as a virtual value decided by the object distance and the image distance. 

The hyperfocal distance plays an important role in minimum sampling of light 
field rendering because it describes the relationship between cameras spacing (the 
number of cameras) needed for capturing and the rendering quality (rendering reso
lution). Given rendering resolution, the higher DH means fewer raw images needed 
for anti-aliasing rendering. The hyperfocal distance is proportional to the rendering 
resolution, and inversely proportional to the number of images used. Given a fixed 
hyperfocal distance, the relationship between the rendering resolution and the num
ber of images is linear. 

7.4 Minimum sampling of light field 

7.4.1 Optimal constant depth 

Given the minimum depth Zrriin and maximum depth Zmax of a scene, we again de
termine the optimal constant depth Zopt for minimum sampling rate or best rendering 
quality. By the definition of hyperfocal distance, it is equivalent to maximizing the 
hyperfocal distance d^j or DH- The optimal constant depth Z^pt satisfies 

Zopt = argma.x{DH} 

„^ ry -^ n„Z (-y 24) 
"• '^mm '- D„ + Z 

ry ^ DHZ 

^max _::; Du — Z ' 

The maximum DH arrives when 

1 

Zopt 

a 
1 

DH 

_ If 1 1 
~ 0 I 7 . 7 

„ l r 1 1 1 
9 L 7 . 7 J 

(7.25) 
^opt ^ ^niin ^rnax 

with 

1 1. 1 1 . 
(7.26) 

The geometrical interpretation of Zopt is that the optimal constant depth is the 
harmonic mean of the minimum and maximum depths. The maximum DH is decided 
by (7.26), which means the relationship between the spacing of the cameras and 
output quality is determined by the scene depth variation. In other words, (7.26) 
completely determines the minimum sampling of light field rendering. 
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Fig. 7.8. Multiple layers of constant depth are recursively constructed for minimum sampling 
of light field rendering. Given the minimum and maximum depths of a scene, and the rendering 
resolution, the number of depth layers needed for anti-aliased light field rendering is computed 
recursively. 

7.4.2 Multiple depth layers segmentation 

From the above analysis, we know that the hyperfocal distance is specified by the 
maximum and minimum depths of the scene. We understand that, the larger the depth 
of field, the more input images needed for anti-aliased light field rendering. More 
images mean more storage and less efficient rendering. Therefore, segmenting the 
depth of the scene into multiple depth layers effectively decreases the depth of field 
and decreases the number of cameras needed for rendering. The number of layers is 
determined by the trade-off between rendering efficiency and the storage of image 
data. 

Figure 7.8 illustrates how the scene is recursively segmented into multiple layers. 
From (7.17), we get the following relationship between the layers: 
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r 1 DH-I I 1 
ZmaA'") DH Z„pt{n) DH 

1 ^DH+I 1 1 1 

(n) DH Z„j,t{n) DH 

Zmaxijl) = Z^iniP' +1 ) 

(7.27) 

where Z„pt{n), Zmin{n), and Z,nax{n) are the optimal constant depth, the minimum 
depth and the maximum depth of the n*'* layer, respectively. 

From (7.27), we have 

Zoptin) ^DH+I' ^ZO,AO) I'' • 

A special case of (7.28) is that 7 = 0. When the rendering camera is located on the 
U axis, we get the following equations: 

' - ^ 1 1 , (7.29) 

1 1 , 1 1 , 
DH -/V + 1 ZmAn Z., 

(7.30) 
m.a,x 

The above equations determine the minimum sampling in the joint image and 
geometry space. Specifically, the minimum sampling problem in the joint image and 
geometry space is described by the relationship among the number of images, the 
output resolution and the number of constant depth layers. Depth layer segmentation 
effectively increases the hyperfocal distance. 

7.5 Summary 

We have described an optical analysis of the light field rendering system. Here, light 
field rendering is regarded as a synthetic aperture optical system with a constant 
depth assumption for the scene. From the optical analysis of light field sampling, 
we obtain the relationship among the depth variation of the scene (depth of field), 
the number of images (aperture) and the rendering resolution (circle of confusion). 
Specifically, this relationship is completely described by the hyperfocal distance of 
the virtual optical system. The optical analysis is applied to estimate the optimal 
constant depth for a given scene for the best rendering quality. The minimum sam
pling rate is then derived. To extend the optical analysis to cover significantly larger 
depth variation, we presented the optimal depth segmentation using fewer number of 
images, without loss of rendering quality. 

Analogous to the Gaussian optical system, we defined the following optical pa
rameters: 

Focal length / ; 
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• Smallest resolvable feature (on the image plane) d; 
• Aperture D. Distance between two adjacent cameras; 
• Circle of confusion c = d/ f; 
• Hyperfocal distance DH = D/c. 

Let the plane of perfect focus be at the distance Zopt, the minimum and maximum 
distances at which the rendering is acceptable be Zmin 'ind Zma^^ respectively. The 
following relations exist ([11], vol. 1, p.1.92): 

_ DnZopt A ^ ^ DnZopt 
DH + Zopt DH - Zopt 

which lead to. 

1 

1 

DH 
( ' ^ ) / 2 
^z • z ''" 

As a result, to have the best rendering quality, no matter which optical system 
is used, the focus should be always at Zopt- Moreover, to guarantee the rendering 
quality, DH has to be satisfied, i.e., 

D 1 1 
dTf = ( ^ ^ 7 ™ ) / 2 . (7.31) 

In other words, given the minimum and maximum distances, the maximum cam
era spacing can be determined in order to meet the specified rendering quality. The 
hyperfocal distance describes the relationship among the rendering resolution (circle 
of confusion), the scene geometry (depth of field) and the number of images needed 
(synthetic aperture). Intuitively, the minimum sampling rate is equivalent to having 
the maximum disparity less than the smallest resolvable feature on the image plane, 
e.g., camera resolution or one pixel, i.e., d — 5^ = 1. The same result was also 
obtained by Lin and Shum [167] using a geometrical approach. 

Equation (7.31), not surprisingly, is the same as the one from geometric analysis 
in the previous chapter, and is almost exactly the same as Equation (5.8) because 
DH = 2//i(^. However, the approach using spectral analysis of light field signals 
incorporates the textural information in the sampling analysis. 

While the experimental results are encouraging, the sampling rate of plenoptic 
sampling could be further reduced if the characteristics of human vision are consid
ered. For example, manifold hopping (Chapter 14 and [273]) can greatly reduce the 
size of the input database. 
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Optimizing Rendering Performance using Sampling 
Analysis 

From the sampling analyses in previous three chapters, it is evident that the ren
dering performance of an IBR system is determined by the number of images and 
the amount of geometrical information used. In this chapter, we describe the lay
ered Lumigraph representation proposed by Tong et al. [297], What is interesting 
about this representation is that, given the output image resolution and the rendering 
platform (e.g., process speed and memory), it is configured for optimized rendering 
performance based on the sampling analysis. The layered Lumigraph is produced by 
classifying all pixels into a number of depth layers. Based on the plenoptic sampling 
analysis, the layered Lumigraph is constructed to achieve the same rendering quality 
along the minimum sampling curve by balancing the number of images and depth 
layers. For a given rendering platform, the best rendering performance can be ob
tained by choosing the optimal number of images and depth layers. Moreover, the 
layered Lumigraph is capable of level-of-detail (LOD) control using the same im
age geometry trade-off. Therefore, the layered Lumigraph fully exploits the inherent 
constraints between the number of images, depth complexity, and output resolution. 
Finally, a backward warping technique is designed to efficiently render the layered 
Lumigraph by taking advantage of texture mapping hardware. 

8.1 Introduction 

As different types of rendering environment call for different IBR representations, 
IBR systems should be optimized in the joint image-geometry space. Plenoptic sam
pling analysis reveals that many IBR systems with different combinations of images 
and geometry can be used to achieve anti-aliased rendering. However, the existing 
IBR systems are typically not flexible enough to represent different combinations in 
the joint image-geometry space. 

Moreover, to reduce rendering time, sampling resolution in the joint image-
geometry space should also match the output resolution. As a result, the scene needs 
to be represented at different levels of details (LOD). Although the LOD control 
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in either image space [318] or geometry space [108] has been explored in previous 
work, efficient LOD control in the joint image-geometry space is still nontrivial. 

In this chapter, we describe an IBR representation called the layered Lumigraph 
with LOD control [297]. This representation permits efficient LOD control in both 
image and geometry space for the best rendering performance. The layered Lumi
graph extends the conventional Lumigraph concept by classifying all pixels into a 
number of depth layers. It offers the following features: 

• Optimal rendering performance across different rendering platforms. Because the 
layered Lumigraph describes the minimum sampling curve in the joint image-
geometry space, representations with different trade-offs between the number of 
images and the number of depth layers can be easily constructed. 

• Efficient LOD control in the joint image-geometry space. Both the image res
olution and the number of depth layers are dynamically adapted to the output 
resolution. 

• Rendering using an efficient backward warping algorithm implemented on tex
ture mapping hardware. 

The remainder of this chapter is organized as follows. We first give an overview 
of the related work in the next section. Plenoptic sampling analysis in the joint image-
geometry space is then briefly reviewed. Following that, we describe the layered Lu
migraph in the joint image-geometry space. The construction, optimization and hier
archical representation of the layered Lumigraph are also discussed. We then discuss 
how the layered Lumigraph can be efficiently rendered, with LOD control, using a 
backward warping technique. Experimental results are then presented, followed by 
concluding remarks. 

8.2 Related work 

8.2.1 Image-based representation 

The light field technique [160] densely and uniformly samples the radiance of a scene 
or object as a 4D plenoptic function of position and direction without incorporating 
any geometry or depth information. The Lumigraph [91] is similar to light field ren
dering but it applies approximate geometry to improve rendering quality. The dynam
ically reparameterized light field [116] extends the light field technique to include a 
variable focus plane or surface and therefore reduces the sampling density required. 
Schirmacher et al. [257] introduced an interactive Lumigraph rendering algorithm by 
augmenting the light field with its corresponding depth map. When accurate depth 
values are used, the image can be rendered by directly warping the nearby input 
image according to the pixels' depth. To overcome the inefficiency of 3D warping, 
Schaufler [255, 64] introduced the concept of layered impostors to approximate the 
object geometry. For a given viewpoint, the scene is divided into a series of frontal-
parallel layers from back to front. Each layer contains an image of the scene that 
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belongs to this layer. For a new viewpoint, the scene can be rendered from these lay
ers on texture mapping hardware. To deal with occlusion problems. Layered Depth 
Images (LDI) [264] stores multiple pixels and their depths along each line of sight 
that emits from a single viewpoint. For a real scene, the LDI can be generated by 
warping images from multiple reference views to a common view. 

In this chapter, multiple reference cameras are set in a light field configuration 
while each ray is augmented with a quantized depth. The layered Lumigraph is sim
ilar to [257]. There are, however, several differences between these two representa
tions. Firstly, the motivation of the layered Lumigraph is to provide flexibility in the 
joint image-geometry space so that it can be optimized for different types of comput
ing environment and output resolutions. Secondly, in the layered Lumigraph, we not 
only can use a higher resolution depth map to reduce the number of image samples 
required, we can also use a large number of image samples to reduce depth com
plexity. Thirdly, while previous methods do not deal with hierarchical image-based 
representations, developing an automatic LOD control in the joint image-geometry 
space is an important goal of this chapter. 

Image plane 

'^('/ Camera plane 

Fig. 8.1. The LOD control in the joint image-geometry space. The projection error becomes 
smaller when the view moves farther away from the camera plane. By assuming the maximum 
projection error allowed in the rendering result, the projection error can be used as the error 
metric for LOD control. 
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8.2.2 Minimum sampling curves for different output resolutions 

In the previous chapters, we have learnt about the optimal depth and minimum sam
pling rate, and the minimum sampling curve in image-geometry space. To match 
the rendering complexity with output resolution, we need to construct levels of de
tails in the joint image-geometry space. Plenoptic sampling also encodes the interac
tion between the output resolution and minimum sampling curve in the joint image-
geometry space, but only for new views on the camera plane. 

Figure 8.1 shows how a projection error occurs at a displaced view from the 
camera plane. Here we assume the minimum, maximum and optimal depthes of the 
current layer i to be z^in^i, Zmax,i^ Zopf^i respectively. Also, let Zy be the depth 
distance between the current viewpoint and camera plane. The projection error is 
then 

(^proj = ^Sj{Zopt/Zmin ~ ^)/[Zy + Zopl). (8-1) 

When the current viewpoint lies on the camera plane and its focal length equals 
to those of the reference cameras, the minimum sampling rate can be derived as in 
the case of spectral analysis of plenoptic sampling. In this case, the maximum projec
tion error is assumed to be At. Texture distribution and input resolution are however 
ignored here. In practice, a MipMap [318] can be used to make the input image 
resolution comparable to the output resolution. Moreover, if we have additional in
formation about texture distribution, we can relax the above constraints further. 

8.2.3 Hierarchical image-based representations 

To deal with the sampling issue of LDI, Chang et al. [39] introduced a LDI tree 
which combines a hierarchical space partition scheme with the concept of LDI. The 
image caching technique [265] used the same hierarchical structure as the LDI tree 
but each space partition has an imposter instead of an LDI. Oliveira et al. [216] 
also incorporated a texture pyramid into relief texture mapping in order to keep the 
warping cost proportional to the size of the output image. 

The layered Lumigraph representation is similar to [39,216]. There are, however, 
two important differences. Firstly, its hierarchical representation is based on individ
ual reference views rather than a combination of these views into a single center of 
projection. Therefore, it does not incur any loss of variations in scene appearance. 
Resampling errors are minimized because the original input images are not com
bined into a single reference view. The direct use of multiple reference views also 
reduces the sampling resolution required in the depth space. Secondly, its LOD con
trol is embedded not in the image space but in the joint image-geometry space. If the 
screen resolution decreases or if the viewer moves farther away from the scene, the 
image resolution and geometrical details (the number of depth layers) can both be 
reduced without loss of visual quality. 

8.2.4 Image warping 

The image warping described in [189] is a forward mapping process. The pixels of 
the reference images are traversed and warped to the output image in the order they 
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appear in the reference images. The disadvantage of the forward mapping algorithm 
is its tendency to produce hole artifacts due to self-occlusion or insufficient sam
pling. Backward warping is used as a rendering mechanism to avoid hole artifacts. 
However, it is computationally expensive. Drawing each pixel in the output image 
requires searching the entire epipolar line in the reference image. In [216], the 3D 
warping procedure is factored into a ID forward mapping step and a traditional tex
ture mapping step with the support of standard graphics hardware. In view-dependent 
texture mapping (VDTM) [60], the scene is represented as polygonal models with 
multiple texture maps, which are blended at render time. 

The layered Lumigraph can be considered as a hierarchical extension to the 
method of VDTM [60]. Frontal-parallel sprites, rather than polygonal models, are 
used to represent the scene geometry. In addition, the number of layers used for 
rendering is automatically optimized for the available computing resources and the 
current output resolution by incorporating LOD control in the joint image-geometry 
space. 

8.3 Layered Lumigraph 

The relationship between the number of image samples and the number of depth 
layers described in the previous plenoptic sampling analysis leads to the layered 
Lumigraph. In this section, we first provide an overview of the layered Lumigraph 
rendering system. This is followed by a description of the layered Lumigraph pre
processing procedure. 

8.3.1 System overview 

Table 8.1. Data structure of the layered Lumigraph. 

ColorPixcl: 
Colorlmage: 
Disparity Indeximage: 
Layered Lumigraph 

{ 
int 
int 
int 
float 
Colorlmage 
Disparity Indeximag 

} 

unsigned char ColorRGB [3J; 
colorPixel Pixels[ResU][ResV]; 
unsigned char DepthPixels[ResU][ResVJ; 

NumberOfLayer; 
ResS, ResT; 
ResU, ResV; 
LayerDisparityTable[NumberLayer]; 
ColorImages[ResS] [ResT]; 

; DisparityImages[ResS][ResT]; 

The layered Lumigraph extends the conventional Lumigraph/light field repre
sentation by assigning a depth layer for each pixel. Like a Lumigraph/light field, the 
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Fig. 8.2. The layered Lumigraph system. 

layered Lumigraph is also represented by a two-plane parameterization. Because all 
sample cameras lie on the same plane, the depth layers used in a layered Lumigraph 
are planes parallel to the camera plane. The pseudo-code in Table 8.1 describes the 
data structure of the layered Lumigraph. In practice, Tong et al. [297] found that one 
byte is generally sufficient to encode the index of depth layers. If more depth layers 
(more than 256) are involved, more bits (16 or 32) should be used to index the depth 
layers. 

As shown in Figure 8.2, the layered Lumigraph rendering system consists of two 
stages. In the preprocessing stage, the layered Lumigraph is first constructed from 
evenly sampled images. For the highest output resolution, this original layered Lu
migraph is optimized to maximize the rendering performance on a given platform. 
The hierarchical layered Lumigraph is then generated from the optimal layered Lu
migraph for efficient LOD control. 

In the rendering stage, the LOD of the layered Lumigraph is first tailored to the 
current output resolution and view position. Then, the tailored layered Lumigraph is 
rendered via the texture mapping hardware. 

8.3.2 Layered Lumigraph generation and optimization 

To construct the layered Lumigraph, the raw Lumigraph/light field images of the 
scene are first captured at each sample grid on the camera plane. The depth maps 
from the same sample cameras are either captured simultaneously or computed later 
using a stereo algorithm. According to plenoptic sampling analysis, the disparity of 
the scene is uniformly divided into the maximum number of layers allowable by 
the system. Finally, the disparity value for each pixel is classified according to the 
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Fig. 8.3. Layered Lumigraph optimization; (a) original layered Lumigraph, shown as a point 
above the minimum sampling curve, (b) constructing the optimal layered Lumigraph for the 
given output resolution, (c) constructing LOD for the layered Lumigraph. The contour plot 
in (c) illustrates the rendering performance for different combinations of images and depth 
layers. The darker the region, the better the rendering performance. 

layer it belongs to. As shown in Figure 8.3, instead of storing all the combinations of 
images and depth layers along the minimum sampling curve for the highest output 
resolution, only the images in the original Lumigraph and the maximum number of 
depth layers are required for storage. 

As shown in Figure 8.3, given the highest output resolution specified by a user, 
the minimum sampling curve can be determined first in the joint image-geometry 
space. Along the minimum sampling curve, the best rendering performance for any 
given rendering platform is achieved at a specific point, which is defined as the opti
mal layered Lumigraph. 

After the minimum sampling curve has been determined by the highest output 
resolution, a constrained optimal layered Lumigraph is constructed from the orig
inal layered Lumigraph. The constraints are based on the fact that the images are 
presampled. Since the rendering performance is determined by many issues (graph
ics hardware, CPU, memory, etc.), it is difficult to get a closed-form solution for the 
layered Lumigraph optimization. 

Tong et al. [297] did the optimization empirically. They first derived a set of 
layered Lumigraphs with different combinations of images and depth layers from 
the original layered Lumigraph, each of which corresponds to a point on the min
imum sampling curve of the highest output resolution. After the rendering speed 
of these layered Lumigraphs on the given platform is tested, the one with the best 
rendering performance is the constrained optimal layered Lumigraph for the given 
platform. For example, for the BLOCK data shown in the experimental results sec
tion, they tested the rendering performance of different combinations of images and 
depth layers on two platforms. As shown in Table 8.5, on System A, the optimal lay
ered Lumigraph for the BLOCK scene contains 4 x 4 images. The optimal layered 
Lumigraph of the same scene for System B contains 8 x 8 images. 
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8.3.3 LOD construction for layered Lumigraphs 

As shown in Figure 8.3c, for each output resolution, an optimized layered Lumigraph 
can be extracted from the original layered Lumigraph. All these optimal layered 
Lumigraphs comprise the optimal LOD for layered Lumigraphs in the joint image-
geometry space (shown as the dashed line in Figure 8.3). In practice, it is time-
consuming to construct the optimal layered Lumigraph for each output resolution. 
It is also difficult to control the LOD by switching among these optimal layered 
Lumigraphs at rendering time. 

Therefore, based on the optimal layer Lumigraph for the highest output resolu
tion, the LOD is constructed for different output resolutions with the fixed number of 
images (solid line in Figure 8.3c). In the image space, a series of image pyramids are 
defined for each image in the optimal layered Lumigraph. More specifically, every 
reference image is organized into a Gaussian pyramid, with each level containing 
successively lower-passed spatial frequency color and depth data in the input image. 
The original image forms the lowest level of the Gaussian pyramid, i.e.. Go = / . 
Each successive level of the pyramid is produced by convolution with a Gaussian ker
nel followed by down-sampling by a factor of two: Gn+i = 2 | [Gn ® KGaussian), 
where 2 J. (•) is the two-times down-sampling operation and G„ is the n*'' level of 
the pyramid, which is 1/2" the size of the original in each dimension. 

For efficient rendering, an efficient transformation from the finest depth resolu
tion to varying depth resolutions is also needed. Instead of generating the LOD for 
depth in the preprocessing stage, the number of depth layers is dynamically adjusted 
at rendering time. 

8.4 Layered Lumigraph rendering 

Given a specific rendering platform, the pyramids of the color images and depth maps 
in the optimal layered Lumigraph are loaded into the texture memory and defined as 
the texture MipMaps. The depth map is defined as the palette texture or alpha texture 
with a texture lookup table so that the depth maps can be updated quickly during 
rendering. For systems without palette texture or texture lookup table support, the 
depth texture must be reloaded into the texture memory for any layer adjustment. 

As illustrated in Table 8.2, rendering proceeds in two steps. In the first step, 
the LOD of the layered Lumigraph is tailored to the current output resolution and 
viewpoint position. In the second step, by making use of texture mapping hardware, 
the layers are rendered in a back-to-front order. For each layer, the output image is 
divided into several regions, each of which can be rendered by texture mapping four 
neighboring reference images. In the rendering algorithm, the rendering time mainly 
depends on the number of layers and the output resolution. Details of the rendering 
algorithm are discussed in the following subsections. 
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Table 8.2. Rendering algorithm for hierarchical layered Lumigraph. 

Preproccssing:defining color and palette texture maps; 
Rendering: 
for (novel view point) 

compute new depth layers for new view point; 
if (depth layers are different) 

load new depth layer map; 
for (each rectangle Rg on camera plane) 

project Rs to output image plane to get Ro; 
endfor 
for (each depth layer j back to front) 

project output region Ro to current layer to get region Re.; 
setting the alpha test; 
for (each of four sample cameras for Rs) 

load texture map corresponds to current sample camera; 
render the Re at the optimized distance; 

endfor 
endfor 

endfor 

8.4.1 LOD control in joint image-geometry space 

Given the viewpoint and its desired output resolution, the LOD of the layered Lumi
graph is adapted to provide adequate image resolution and depth layers. In layered 
Lumigraph rendering, since the rendering hardware automatically selects the proper 
MipMap levels for texture mapping, the image resolution used for rendering is al
ways consistent with the output resolution. In the algorithm, the number of depth 
layers is adjusted by merging a set of neighboring layers from the optimal layered 
Lumigraph into new layers. 

As shown in Table 8.3, the original layers in the optimal layered Lumigraph are 
swept from back to front. A sweeping layer is merged with the new layer only if after 
merging, the projection error of the new layer (see (8.1)) is not larger than the output 
resolution. 

After merging, the optimal disparity value is computed for each new layer. The 
mapping between the original layer and the new layer is constructed and defined by 
the texture lookup table. By mapping the index of the original layers to that of the 
new layers, the number of layers is also changed according to the output resolution. 

Alternatively, the new layers could be computed from the layer configuration 
of the last frame so that the coherence between the frames is utilized. Here, Tong 
et al. [297] directly derived the new configuration from the original layers because 
this operation is very fast. 
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Table 8.3. LOD control for depth layers 

iTierge(original layer, new layer) 

{ 
sweepJayer = the farthest original layer; 
new Jayer = sweepJayer; 
for( sweep_layer != the nearest original layer) 

if(valid_merge (newJaycr, sweepJayer)) 
newJaycr = merge(new_layer, sweepJayer); 

else 
new Jayer = sweepJayer; 

sweep_layer = next original layer; 
endfor; 

} 

valid-merge(newJayer, sweepJayer, viewpoint, output resolution) 

{ 
test_layer=merge(new_layer, sweepJayer); 
if (error_proj(testJayer, viewpoint) < output resolution) 

return true; 
else 

return false; 
} 

ii Z(Depth) 

Layer Plane 

ST Camera 
Plane 

Fig. 8.4. Geometric explanation for rendering. For each region R„ on the output image P from 
view C, only images from the four sampling cameras at the corners of region Rs are used for 
rendering. In each sample image, only region Re on each depth layer contributes to the output 
region Ro. 
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8.4.2 Rendering output images 

Given a new viewpoint C and desired image plane P , a straightforward rendering 
algorithm traces each ray from C that passes through the pixel on P to a point in the 
scene geometry. Then the rays from the four nearest cameras to this point are used 
to interpolate the output ray. 

Instead of rendering the output image pixel by pixel, we can directly project the 
layers to the output image because the scene is represented as a number of plane 
layers. The output image plane is divided into several output regions by projecting 
the sampling camera grids onto the output image plane P. As shown in Figure 8.4, 
for each region Ro of the output view C, images from four sampling cameras on 
the corresponding grid points are used to render the layers from back to front. For 
each sampling camera, a set of polygons parallel to the image plane is placed at the 
optimized distance of each layer. These polygons are bounded by the view frustum 
of the corresponding sample cameras. Moreover, for each layer j , we only need to 
render the region Re, which is the projection of the output region Rg onto the layer 
j . Any pixel out of the region R^ makes no contribution to the region Rg. 

For each sampling camera, the polygons in the current layer are first clipped by 
the region ii^'s boundary. These polygons are rendered with the corresponding color 
and depth texture maps. The depth texture map is converted to the new layers first 
and then is applied to the alpha channel of the polygon. The MipMap level of the 
images (texture maps) is controlled by the graphics API automatically. After texture 
mapping, the alpha test is applied to guarantee that only pixels within the current 
depth layer are rendered into the image buffer. The pseudo code of the rendering is 
listed in Table 8.2. 

To reduce the overhead of texture mapping, each sample image is uniformly sub
divided into smaller rectangular texture regions of size nx m. More specifically, the 
depth range of the original layers contained in each small texture region is recorded 
in the preprocessing stage. In the rendering stage, instead of defining a large poly
gon for the whole texture image, a set of small polygons is used for rendering, each 
of which corresponds to one texture region. For each rendering layer, if the original 
layers contained in the current new layer fall into the range of the layer in a texture 
region, the small polygon corresponding to the texture region is used for rendering. 

8.4.3 Performance of layered Lumigraph rendering 

The performance of layered Lumigraph rendering is affected by several factors. 
Firstly, if more layers are used in the layered Lumigraph, more polygons are defined 
and rendered so that more texture mapping operations are executed during rendering. 
As described above, by subdividing the images into smaller regions, we can achieve 
a trade-off between texture mapping overhead and the transformations and clipping 
operations required for the polygons. Secondly, although using the layered Lumi
graph with more images and fewer depth layers reduces the number of depth layers, 
it would take more time to load texture maps into the graphics hardware. Increasing 
the number of images would also result in an increase in the number of polygons and 
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geometry clipping operations. This adversely affects the performance of geometry 
processing. 

The benefit of LOD control in the joint image-geometry space is that the number 
of polygons used for rendering is proportional to the number of depth layers. Thus, 
when rendering a layered Lumigraph with lower LOD, the fewer number of layers 
alleviates the load of the whole graphics pipeline. On the contrary, if LOD control 
is applied only to the image space, only the texture mapping stage benefits from 
LOD control. As we will show in the next section, the LOD control for the layered 
Lumigraph is more efficient than a simple LOD control in image space. 

8.5 Experimental Results 

Tong et al. [297] implemented the layered Lumigraph rendering in C++ and OpenGL 
on two PCs with 256MB main memories. The first PC (System A) was configured 
with a PHI 733MHZ CPU and a Nvidia Geforce256 graphics card. The second PC 
(System B) was configured with the PIII 866MHZ CPU and a Matrox G400 graphics 
card. 

Table 8.4. Configuration of three layered Lumigraph data sets. 

Scene 

NETFERT 
STATUE 

BLOCK 

Size of 
UV plane 

200.0 
400.0 

80.0 

Size of 
ST plane 

100.0 
200.0 

40.0 

F 

160.0 
300.0 

60.0 

^rnin 

183.4 
232.6 

35.4 

^max 

308.8 
581.8 
134.0 

MaxNum 
of layers 

256 
256 

256 

Max Num 
of images 
65 X 65 
65 X 65 

65 X 65 
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Fig. 8.5. Rendering results of the scenes used in the experiments. Left: BLOCK; Middle 
STATUE; Right: NETFERT 

Three synthetic scenes (STATUE, NETFERT, and BLOCK) were used for exper
imentation. The image resolution in the data sets is 256 x 256. The reference color 
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images and accurate depth images were generated by ray tracing using 3D Studio 
Max. After quantizing the accurate depth into 256 layers, the reference images were 
converted into the original layered Lumigraph data sets. For simplicity, only a single 
light slab of the scene is captured and used. The configurations of the original lay
ered Lumigraph for the three scenes are summarized in Table 8.4. Figure 8.5 shows 
the rendering results of the data sets. 

Table 8.5. A comparison on the average rendering time (ms) of the data sets. 

Scene 

NETFERT 

STATUE 

BLOCK 

Rendering environment 

System A 
System B 
System A 
System B 
System A 
System B 

Number of images 
2 x 2 
19.2 
56.8 
12.4 
35.7 
22.1 
64.1 

4 x 4 
13.5 
35.2 
10.6 
24.0 
16.7 
43.1 

8 x 8 
14.5 
29.1 
12.5 
24.4 
19.6 
38.8 

For a different platform, the configuration of the optimal layered Lumigraph can 
be different. To obtain the optimal layered Lumigraph for each data set, the rendering 
speed was measured for different combinations of images and depth layers; each 
combination corresponds to a point on the minimum sampling curve for the highest 
output resolution 400 x 400. As shown in Table 8.5, for the NETFERT scene and 
System A, the optimal layered Lumigraph contains 4 x 4 images. Whereas for the 
same scene, the optimal layered Lumigraph on System B contains 8 x 8 images. 
Comparing with the other representations [160,264] that correspond to some specific 
points in the joint image-geometry space, the layered Lumigraph is flexible enough to 
provide different configurations along the minimum sampling curve. Thus the best 
rendering performance can be achieved on any platform with the optimal layered 
Lumigraph. 

To test the efficiency of the LOD control used in the rendering algorithm, the 
viewpoint was placed at several distances to the camera plane and computed the av
erage rendering time for 100 frames at each distance. Two algorithms are executed in 
the experiments to render the optimal layered Lumigraph on System A. The render
ing algorithm with LOD control, labelled as LOD Algorithm, dynamically adjusts 
the number of depth layers and the image resolution when the viewpoint changes. 
On the other hand, the conventional MipMap algorithm only adjusts the image reso
lution to adapt to viewpoint movement. 

As illustrated in Figure 8.6, when the viewpoint lies on the camera plane, both 
the LOD algorithm and MipMap algorithm use the finest resolution for rendering. 
So the rendering time of the two algorithms for all data sets are the same. When 
the viewpoint moves away from the camera plane, both the image resolution and the 
number of depth layers are reduced in the LOD algorithm. Since the overhead of the 
whole graphics pipeline is reduced, the rendering time is decreased accordingly. For 
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Fig. 8.6. The rendering time (in ms/frame) of the three data sets on System A with different 
LOD control algorithms, where / is the focal length of the sainpling camera. As the viewpoint 
moves away from the camera plane, the rendering time of the algorithm decreases accordingly. 
In contrast, the rendering time of the MipMap algorithm remains relatively constant for all 
viewpoints. 

comparison, the rendering time of the MipMap algorithm is nearly constant for all 
viewpoints. For the viewpoint whose position is 4 . 0 / (where / is the focal length of 
the sampling camera) away from the camera plane, the rendering time of the LOD 
algorithm is only one third of the rendering time of the MipMap algorithm. Obvi
ously, the LOD control in the joint image and geometry space is more efficient than 
conventional LOD control in the image space alone. 

Figure 8.7 compares the rendering results of the NETFERT scene at different 
LODs, which are rendered by the LOD algorithm and MipMap algorithm respec
tively. Although fewer depth layers are used in the LOD algorithm for rendering, the 
rendering quality of the two algorithms are visually indistinguishable. 

8.6 Summary 

The layered Lumigraph with LOD control is an efficient image-based representation 
that is well-suited for different tradeoffs in the joint image-geometry space. Based on 
plenoptic sampling, the layered Lumigraph can be efficiendy optimized to achieve 
the best rendering performance for different rendering platforms. An efficient back
ward warping algorithm is introduced to render the output view by taking advan-
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tage of common texture mapping hardware. With automatic LOD control in the joint 
image-geometry space, the rendering performance of the layered Lumigraph is fur
ther optimized according to the output resolution. The key idea presented here is not 
limited to the configuration of uniform light field sampling and frontal-parallel depth 
layers. 
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Fig. 8.7. Rendering results of the NETFERT scene at several levels of details rendered with 
different LOD control algorithms. Above images are rendered by the LOD algorithm. Below 
images are rendered by MipMap algorithm. These images are visually indistinguishable. 



Part III 

Thus far, we have described the characteristics of various types of image-based rep
resentations as well as rendering issues. It is clear that image-intensive representa
tions such as light fields, Lumigraphs, and CMs are capable of photo-realistic ren
dering, but this is achieved at the expense of large storage and transmission band
width. To overcome these problems, a significant amount of work has been done on 
effective compression and transmission of image-based representations. Although 
image and video compression have been studied extensively and many advanced al
gorithms and international standards are now available [30, 118, 123, 119, 120, 125, 
126], there are specific important requirements in IBR that need to be addressed. 

There are two particularly related important attributes for efficient IBR compres
sion: random access and selective decoding. In conventional videos, random access 
at the group-of-picture level is usually provided (e.g., in MPEG-2 videos) to sup
port fast forward, backward, and jumping to selected locations or chapters. However, 
IBR representations such as the light field and Lumigraph require random access at 
the pixel level while CMs require line level random access. As most existing com
pression algorithms use entropy coding (such as Huffman or arithmetic coding) for 
better compression ratio, the compression sizes of data chunks are variable. With
out random access (and hence selective decoding), extracting data for rendering will 
be dependent on the location of the data and typically expensive. This is because 
sequential access require the retrieval and decoding of all pixels or lines located in 
front of those requested. 

There is a substantial body of work on data compression. It is beyond the scope 
of this book to cover all the topics and issues in conventional data compression. 
Instead, we provide some fundamental background on compression and focus on 
compression techniques specifically geared for image-based rendering. Information 
on basic compression techniques such as lossless compression and subband coding 
are readily available in resources such as [15, 23, 54, 76, 82, 129, 185, 198,208, 242, 
247,284,294,304,311,314]. 

A brief introduction to the basic concept and fundamental techniques in image 
and video compression are first given in Chapters 9 to 11. Then, in Chapters 12 and 
13, the problem of compressing various static and dynamic image-based represen-
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tations will be discussed. Chapters 9 to 11 mainly serve as a quick review of image 
and video compression in order for the readers to understand the materials to be 
discussed in Chapters 12 and 13. Readers with prior exposition to these topics may 
proceed directly to Chapters 12 and 13. 



Introduction to Compression 

An important problem of digital representation of signals and IBR in particular is 
its large amount of digital storage and bandwidth for transmission. As an example, 
consider the transmission of a video with a resolution of (352 x 288) and frame rate of 
30 frames/second. The bits per second (bps) or bit-rate required for transmitting this 
video is 37 Mega bits/sec (Mbps). Using advanced video compression algorithms 
such as the H.261 or H.263 video coding standards, it is possible to reduce the data 
rate to 128-384 kbps and lower. Table 9.1 summarizes the typical data sizes of several 
IBR representations and videos before and after compression. Because of the large 
data size of common IBR representations, data compression becomes an essential 
part of practical IBR systems. 

9.1 Waveform coding 

Data compression is also closely related to source coding in digital communications. 
Figure 9.1 shows the general structure of a digital transmission system where a sig
nal x(n) is transmitted to the receiver through a communication channel. The source 
encoder explores the redundancy in the input signal (or a data file) and reduces its bit-
rate for transmission over the medium (or storage). The output of the source encoder 
is a binary representation of the original signal. The original signal can be recon
structed at the receiver by a source decoder. Depending on the nature of the source 
coding, the reconstructed signal x{n) might or might not be identical to the original 
signal. If they are identical, the coding is referred to as lossless, because there is no 
loss in information after the coding or compression. Lossless coding/compression is 
desirable for data files and medical images, where the integrity of the data has to be 
preserved. On the other hand, for speech, images, videos, and IBR, slight errors or 
distortion of the reconstructed signal are usually introduced by the source encoder in 
exchange for a more compact representation and hence a higher compression ratio. 
The coding process is referred to as lossy, because some information is lost after 
compression. 



174 Image-Based Rendering 

Table 9.1. Typical data sizes of IBR before compression and after compression. Frames per 
second : fps, Kilobits per second : kbps, Megabits per second : Mbps. Note : The YCrCb 
(4:2:0) color component has been used in the calculation, which is half of that for 24-bit RGB 
color system. 

Application 

Concentric mosaic (3D) with 1463 normal view images 
(352 X 288) X 1463 
32 X 32 Light field (4D) 
(256 X 256) X 32 X 32 
Panoramic videos (3D) 
(2048 X 768), 25 fps 
Plenoptic videos (4D) with 8 cameras 
BT.601: (720 x 480), 30 fps x 8 
Video conferencing 
CIF format: (352 x 288), 30 fps 
High quality video distribution 
BT.601 : (720 x 480), 30 fps 
HDTV 
SMPTE296M : (1280 x 720), 60 fps 

Data Size/Rate 
YCrCb(4:2:0) 
Uncompressed 
1.78 Gb 

805 Mb 

472 Mbps 

995 Mbps 

37 Mbps 

124 Mbps 

664 Mbps 

Compressed 
29-36 Mb 
[269] 
8-12 Mb 
[341] 
9-18 Mbps 
[210] 
24-48 Mbps 

128-384 kbps 
(H.261,H.263) 
4-8 Mbps 
(MPEG-2 video) 
20-45 Mbps 
(MPEG-2 video) 

Techniques for lossy compression of digital signals can be classified broadly into 
waveform coding techniques and model or content-based techniques. In waveform 
coding, we try to approximate the input signal x{n) by its encoded value x{n), sub
ject to certain bit-rate or distortion constraints. One commonly used criterion for 
measuring the distortion between x{n) and x{n) is the mean squared error (MSE) 
(to be described later). Waveform coding is widely used in encoding speech, im
ages, videos and IBR. In fact, a number of international standards for coding images 
and videos, such as JPEG [118], JPEG-2000 [123], H.261 [30], H.263 [126], H.264 
[125], MPEG-1 [119], MPEG-2 [120] are based on waveform coding techniques. 
Most IBR compression techniques we describe in Chapters 12 and 13 also make use 
of waveform coding. In order to provide higher compression ratio and more flexibil
ity in content manipulation, model- and content-based techniques are gaining more 
attention recently. In model-based coding, models of the objects to be encoded are 
employed to further improve the coding performance. Interested readers are referred 
to [314] for a comprehensive description of content-based approaches. 

Figure 9.1(b) shows the general structure of a waveform coding system. It con
sists of three functional blocks: decorrelation, quantization and entropy coding. The 
main reason for performing decorrelation is that signals such as speech, images and 
videos are highly correlated. This means that adjacent samples in a speech signal, or 
adjacent image pixels in an image or videos usually resemble each other. If the image 
pixels are directly compressed lossiessly by entropy coding techniques such as Huff
man or Arithmetic codes, the compression ratio is usually very limited. To improve 
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Fig. 9.1. (a) Structure of a data transmission system, (b) General structure of a waveform 
coding system. 

the compression ratio, the input signal is usually decorrelated using decorrelation 
techniques such as orthogonal transformation, subband filters, linear prediction, or 
a combination of them. These techniques reduce the redundancy in the input signal 
and produce a more compact representation of the input signal. For example, in trans
form coding (Section 10.2), the input is first divided into non-overlapping vectors. 
Each vector will undergo a linear signal transformation so that most of its energy 
is concentrated into a few significant transform coefficients, while the amplitudes 
of the remaining coefficients are usually very small. Significant compression can be 
achieved by thresholding these small amplitude coefficients to zero and approximat
ing the others with fewer number of bits. This lossy process is called quantization 
(Section 9.3) and it leads to a very high compression ratio. The quantized signals and 
other auxiliary information, called the symbols, are then losslessly encoded using 
entropy coding. The basic idea of entropy coding is to assign codewords with differ
ent length to symbols with different probabilities so that the average wordlength of 
the symbols to be transmitted can be minimized. Ideally, we would like the coding 
process to produce a codeword of length log2(l /p) , called the information content, 
for a symbol of probability p. Therefore, more probable symbols are given shorter 
codewords. In Huffman code [111], the length of each codeword is an integer and 
it increases with the information content of the corresponding symbol. For example, 
suppose we have five source symbols ,si to .s'5 with the following probabilities: 

p ( s , ) = 0 . 4 , p ( s 2 ) = 0 . 2 , p(s,3) = 0.15, p ( s 4 ) = 0 . 1 5 , ^(ss) = 0.10. 
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Their Huffman codes will be given by ,si = 1, S2 = 000, S3 = 001, SQIO = 1 and 
.S5 = Oil. Interested readers are referred to standard texts [314] for the generation 
and decoding of Huffman code and its properties. Since the codewords are of variable 
lengths, it is also called a variable length code (VLC). 

One might notice that in order to access a particular symbol in the compressed 
bit stream, all the previous symbols have to be decoded. This is an important prob
lem in IBR applications, where fast random access to image pixels or line of pixels 
is required. Usually a group of symbols will be coded independent of the other such 
that they can be accessed in groups using pointers or other structure. This will how
ever degrade the coding performance to some extent. More detail will be given in 
Chapters 12 and 13. 

In arithmetic coding, each possible symbol is assigned a subinterval between 
[0,1) with a length equal to its probability. During encoding, each additional symbol 
is used to specify a new subinterval within the previous one and the subdivision is 
done in a way identical to the partitioning in the symbol sub-division. When a series 
of symbols is processed, the length of the sub-interval associated with the encoded 
symbols gets smaller and smaller. After encoding the input message, a subinterval 
between [0,1] will be obtained. The code is a binary number having the minimum 
number of bits that lies inside that subinterval. For example, if we have five symbols 
with probabilities: 

p(si) = 0.1, p(.S2)=p(S3) = 0.15, p(S4)=0.2, p(s5) = 0.4. 

For the message {ss, S5, S4,S3, S2, s i} , the number V = 0.9124908447 with the 
following 16-bit binary representation will be sent to the receiver. 

2- i+2-2-h2- '^ + 2~^ + 2"**-|-2"^-F2"^2-f-2-^'V2-'*'= (1110100110011001). 

To encode the same symbols, Huffman code requires 14 bits, while fixed length 
code requires 18 bits. It can be seen that arithmetic code produces a single codeword 
for a set of symbols. Further, according to the symbol sub-interval ranges, more 
probable data sets will correspond to larger sub-intervals and hence it requires less 
precision or wordlength to specify a codeword in that interval than less probable data 
sets. Arithmetic code usually performs better than Huffman code because multiple 
message symbols are coded together in a very simple manner. 

In image coding standards like JPEG and JBIG (Joint binary image expert Group 
[122]), binary arithmetic coding with binary alphabet is adopted. It is because binary 
alphabet allows simple approximation to be made in the interval scaling to elimi
nate the need for multiplication. Another reason is that simple probability estimation 
technique can be developed for binary coders to adapt to the changing probabilities. 
Interested readers are referred to [228, 199] for more details. In addition to Huffman 
and arithmetic codes, pattern based coders such as Lempel-Ziv-Welsh coding (LZW) 
[351, 350] are also frequently used in lossless compression of data file. 

In the following, we describe some basic terminology in data compression. A 
brief summary of quantization techniques will be given in Section 9.3. 
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9.2 Basic concept and terminology 

We now describe a few basic concepts and terminologies in data compression. 

9.2.1 Compression ratio 

One important consideration in designing a data compression system is the perfor
mance of the compression algorithm. This is usually measured by the compression 
ratio and the quality of the signal or information after reconstruction. Compression 
ratio is simply the ratio of the amount of storage or transmission bandwidth (usually 
in terms of bits (or Bytes) for storage and bits per second for transmission bandwidth) 
before compression to that after compression. For instance, the 4D light field of the 
Buddha statue [160], which consists of an (32 x 32) array of (256 x 256) 24-bit per 
pixel images, has a total size of 192 MB. If the data size after compression is 1.92 
MB, then the compression ratio is 100. 

As mentioned earlier, loss of information is usually undesirable in compressing 
data files and other information such as medical images. Because of this limitation, 
the compression ratio of lossless compression algorithms is usually limited from 1 
to 10, depending on the characteristics of input data. Greater compression can be 
achieved if loss or distortion of the information to be compressed is allowed. In 
these lossy compression algorithms, the reconstructed signal quality can be traded 
for a higher compression ratio and appropriate measures are needed to quantify the 
distortion due to data compression. 

9.2.2 Distortion measures 

Common measures of signal quality include signal-to-noise ratio (SNR), peak signal-
to-noise-ratio (PSNR), and mean opinion score (MOS). 

Signai-to-noise ratio 

Suppose that a signal x(n) is encoded to x{n). The difference between x{n) and 
x{n) is called the reconstruction (quantization) error or noise ein), i.e. e{n) = x(n) -
x{n). A standard objective measure of distortion is the SNR (usually expressed in 
decibels (dB)), which is defined as the ratio of signal energy E[x'^{n)] to that of the 
quantization error E[e'^{n)]: 

SNR(dB)=101ogio'' '^' ' ' ' '^"^' 
£[e2(n)] 

where E[-] denotes the expectation or averaging operator. The quantity E[e'^{n)] is 
also referred to as the mean square error (MSE). As an example, for a 2D image of 
size(iVi X iVa), {x-(rti,n2),n] = 0,1,..., Ni;n2 = 0,1,...,N2}, 

-. Ni Ni 

ni~l rii — 1 
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Table 9.2. Five-point adjectival scales for quality and impairment, and the corresponding num
ber scores. 

Number scores Quality scale Impairment scale 
5 
4 
3 
2 
1 

Excellent Imperceptible 
Good (Just) Perceptible but not Annoying 
Fair (Perceptible and) Slightly Annoying 
Poor Annoying (but not Objectionable) 
Unsatisfactory (Bad) Very Annoying (Objectionable) 

The higher the value of SNR, the smaller E[e^{n)] will be and hence the closer will 
be the reconstructed value x{rL) to its original x{n). 

Peak signal-to-noise ratio (PSNR) 

Another objective measure, which is commonly used in image or video coding, 
is the PSNR. It is defined as 

P S N R ( d B ) = 1 0 1 o g i o ^ ^ . 

Instead of computing the signal energy (energy of an image or video), the maxi
mum value of an 8-bit precision pixel, i.e. 255, is used to simplify the computation. 

Mean opinion score (MOS) 

MOS is a subjective measurement of coder performance. It involves an ensemble 
of subjects (person). Each of the subjects classifies a stimulus (coder outputs are 
compared) on an N-point quality factor. An example of five-point adjectival scale for 
signal quality or signal impairment is shown in Table 9.2. 

MOS is frequently employed in subjective evaluation of speech, audio, image 
and video coding. In particular, it was found that MOS is more relevant to the quality 
of the speech codecs than to SNR. A codec with sufficiendy high MOS but low 
SNR can still produce speech with good intelligibility for communication purposes 
(communications quality). Interested readers are referred to [129] on other subjective 
measurement of coder performance. 

9.2.3 Signal delay and implementation complexity 

From Figure 9.1, we can see that the input signal x{n) has to go through a num
ber of system components before it can be reconstructed as x{n). A certain time 
delay is thus unavoidably experienced in the receiving end. A long time delay can 
adversely affect the users' experience in interactive applications such as voice- or 
video- phones. The total time delay consists of two major components: coding and 
transmission delays. 

Coding (or algorithmic) delay is the time delay associated with the processing of 
the signal at the encoder and decoder. It arises from the inherent delay of the coding 
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algorithm and the processing of the signal by physical hardware. For example, in 
MPEG-2 video coding, if successive reference frames are 3 pictures apart, then 5 
pictures need to be stored in order to predict the 3 pictures in between from the 
reference pictures using motion estimation. The inherent delay can be reduced by 
proper selection of the coding algorithms and coding parameters. On the other hand, 
coding delay associated with the hardware/software implementation of the codec can 
be reduced by employing processors with higher performance. 

Transmission delay is the time needed to transmit the compressed bit stream to 
the receiver. It depends on the communication channels such as the mobile channels, 
phone lines, packet networks, etc. These characteristics are usually fixed and they 
more or less define the allowable coding delay of the system. 

The implementation complexity of a codec is closely related to the data rate of 
the information to be compressed and the complexity of the compression algorithm. 
For example, more operations, storage, and internal data bandwidth will be needed 
to compress a (320 x 240) video at 30 frames/sec than a (176 x 144) video at 15 
frames/sec, if the same compression algorithm is used. Obviously, different encod
ing algorithms have its own characteristics and hence different computational com
plexity (addition, multiplication and other operations), storage, and communications 
bandwidth. 

9.2.4 Scalability and error resilience 

Scalability of a codec refers to its ability to produce a data stream, which can be 
successively decoded to reconstruct the original images or videos with increasingly 
better quality. Scalability also simplifies progressive viewing and transmission of 
multimedia objects. When browsing a multimedia database for an object such as an 
image, it is very convenient to make available to the users a low-resolution rendition 
of the required objects in order to reduce the response time of the system. Simi
larly, in transmitting multimedia information over networks with high or variable bit 
error rate, such as a wireless network or a packet network, more important infor
mation, usually called the base layer, can be transmitted in higher priority packets 
or protected with channel codes having higher immunity to transmission errors (Er
ror resilience) at the expense of a larger bandwidth. On the other hand, additional 
information in an enhancement layer can be transmitted with less priority. 

Depending on the nature of the information to be encoded and the application 
requirements, different methods are available to support scalability. In simple appli
cations, scalable codecs having a coarse granularity of a few layers are sufficient. For 
more sophisticated applications, fine granularity scalability is required. In embedded 
coders, say JPEG 2000, the bit stream can be truncated at any point. The more bits 
that are received, the better the quality of the reconstructed images or videos will be. 

For image and video coding, SNR and spatial scalability are commonly used. 
In SNR scalability, a lower quality of the image or video is used as the base layer, 
while the error image or video is further encoded to a higher fidelity in additional 
enhancement layer(s) to improve the reconstruction quality. In spatial scalability, the 
original image is first decimated to a lower resolution image and it is first encoded 
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as the base layer. The decoded low-resolution image is then interpolated to obtain an 
approximation of the original. Similar to SNR scalability, the coding error is further 
encoded in the enhancement layer(s) to a higher fidelity to improve the reconstruction 
quality. 

In addition to SNR and spatial scalability, an additional freedom based on tem
poral scalability is available in video coding. The basic idea is to form the base layer 
by encoding the video at a lower frame rate. The in-between video frames form 
the enhancement layer, and these frames are encoded using bi-directional predic
tion from the base layer. By employing different coding and scalability techniques 
to form and encode the base- and enhancement layers, there are many variations of 
these basic schemes. Another scalability technique, which is associated with con
tent based coding, is called object scalability. Basically, the video is described as a 
set of video objects (VO) and video object layers. In Chapter 12, we shall describe 
an object-based coding scheme for compressing simplified light fields, which offers 
many such desirable properties. 

9.2.5 Redundancy and random access 

As mentioned earlier, adjacent image pixels in traditional images and videos are usu
ally highly correlated and can be explored to achieve data compression. As image-
intensive representations are usually densely sampled higher dimensional signals, 
adjacent image pixels of these representations are also highly correlated. Because 
of their high dimensional nature, the redundancy in different dimensions can be ex
plored to obtain a more compact representation. In traditional videos, random access 
at the group of picture level is usually provided, say in MPEG-2 videos, to support 
VCR functionalities such as fast forward, backward, and playback at selected chap
ters. 

On the other hand, higher dimensional IBR representations such as 3D Concen
tric Mosaics (CMs) require random access at the line level, whereas the 4D light field 
and Lumigraph require random access at the pixel level. As most existing compres
sion algorithms employ entropy coding (such as Huffman or arithmetic coding) for 
better compression ratio, the symbols after compression are of variable sizes. It is, 
therefore, very time-consuming to retrieve and decode a single line or pixel from the 
compressed data if there is no such provision for random access. Providing random 
access to the compressed data for real-time rendering is thus an important and unique 
problem of IBR compression. More details are given in Chapters 12 and 13. 

9.3 Quantization techniques 

Scalar quantization is the process of transforming a given value x G 5R into a finite 
set of possible output values C = {y\,y2i •••.HL} C 5ft. Analogue-to-digital (A/D) 
conversion of a continuous-time signal to its binary representation is an example of 
scalar quantization. When compressing digital signals, we are interested in represent
ing an n-bit signal sample using fewer number of bits, say n^. This is performed by 
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a quantizer and it will introduce a distortion of tlie original value. Therefore, unlike 
entropy coding, quantization itself is a lossy process. Since different mappings or 
quantizers will result in different amount of distortion, we are interested in finding a 
right quantizer, say with sufficient number of bits R, such that the distortion is small 
enough for a desired application. It is also possible to quantize a group or vector of 
signal values. Such a quantizer is referred to as a vector quantizer and the process is 
called vector quantization (VQ). 

In what follows, we shall briefly review the basic definition and concept of scalar 
quantization. Then, the concept of vector quantization will be introduced. 

> - « > • ) 

zr H^K 

A midtiiread quantiser witli a dead zone 

(a) (b) 

Fig. 9.2. Examples of quantizers, (a) Non-uniform quantizer, (b) uniform quantizer with a 
deadzone [-T,T] around x = 0. 

9.3.1 Scalar quantization 

An L-level scalar quantizer Q is a mapping. 

0 : 3ff ^ C, (9.1) 

which maps the real line !R to a finite set of reconstruction values or representation 
levels, yk"&, called the codebook: 

C = {yi,y2,-,yL} c 5ft. (9.2) 

In effect, the quantizer partitions the real line 5R into L non-overlapping cells or 
partitions, Ik, k=l, ..., L, and maps those values of x inside Ik to the corresponding 
reconstruction value yk- This is illustrated in Figure 9.2(a). More formally, we have 
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4 = {.T€(.x'fc,Xfc+i]:Q(.x-) = 2/fc} fc = l,2,. . . ,L. (9.3) 

Xk 's are called the decision levels. When the signal lies in the bounded cells of the 
quantizer, the quantization error is usually small and it is referred to as the granular 
noise. On the other hand, for input signal that lies in the unbounded cells (with x 
larger than Xoi) of the quantizer, large distortion called overload distortion is experi
enced. 

In uniform quantizers, the decision levels are regularly spaced. It is therefore very 
simple to determine the index k of the corresponding reconstruction level for a given 
input (by dividing the input x by A). As an example, consider the uniform midtread 
quantizer in Figure 9.2(b) with a dead zone [-7,7] around x=Qi. This quantizer is 
employed in the H.261 video coding standard for quantizing the DCT coefficients 
(AC coefficients). The purpose of including the dead zone is to avoid coding many 
small DCT coefficients which contributes mainly to quantization noise. The stepsize 
of the quantizer A is an even number. The index k can simply be computed as 

fc = 0, if |x| < T, otherwise k = round {x/A). 

In non-uniform quantizers, Xk and yk are not necessarily uniformly spaced, and 
the encoding is slightly complicated. Companding is another commonly used method 
to obtain non-uniform quantizers and it is useful to encode the depth maps of videos 
[148], because of the large dynamic range of the depth values. Also, the rendering 
process is usually less sensitive to errors when depth value is large, hence a larger 
stepsize can be used. The coding of depth map for an object-based coding algorithm 
for simplified light fields will be described in Chapter 13. In vector quantizer, a vector 
of input samples are quantized and these will be discussed later in Section 9.3.2. 

Assume for simplicity that L is a power of two, i.e. L — 2^, for some positive 
integer R. To represent the L different reconstruction levels, one can express the value 
k, called the index, as an R-hit binary number. Therefore, each input sample of x can 
be represented as 

it! = log2 L bits/sample. 

If X is sampled a t / Hz (i.e. every 7=1// second), and each sample is quantized 
to R bits/sample, then the transmission rate required is JR bits/sec. This may be fur
ther reduced by using entropy coding. If a binary representation of k is received at 
the receiver, then the reconstruction level yk will be used as an approximation of the 
sample x. In general, a table is needed to store all the reconstruction values y^ (ex
cept for uniform quantizers and lattice vector quantizers, where the reconstruction 
and decision levels can be computed quite easily). Thus, the de-quantization process 
amounts to a simple table lookup operation. 

Distortion measure 

As mentioned earlier, quantization is a lossy process and it introduces distortion. 
The quantization error of a given quantizer is the difference between its input x and 
its output Q{x): 
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e{x)=x-Q{x). (9.4) 

Since x can assume many different values, it is usually very difficult to tell what 
are the optimal values for the decision and reconstruction levels of the quantizer. 
In order to evaluate the performance of a quantizer, x can be assumed as a random 
variable so that its average performance can be evaluated. The mean squared error 
(MSE) is commonly used because of its analytical simplicity: 

MSE = E[e^{x)], 

where E[] denotes mathematical expectation over x. Alternatively, we can collect 
many samples of the input x to determine the suitable parameters for the quantizer. 
This process is called quantizer design and more detail can be found in [82]. 

9.3.2 Vector quantization (VQ) 

In scalar quantization, a quantizer tries to represent a range of possible input values to 
a small set of reconstruction levels in order to obtain a more compact representation. 
In many applications, successive input samples are obtained from real world signals 
such as images, etc, which exhibit considerable correlation. That is, adjacent samples 
are related or similar to each other. In these cases, it is more efficient to encode them 
together as a vector. This is illustrated in Figure 9.3, where a set of two-dimensional 
vectors are represented by five representative vectors, yo, y i , ..., y4- Another simple 
example is the generation of color palettes for displaying color images with a limited 
number of colors. Suppose that we are given a color image in RGB format with eight 
bits per color component, i.e. 24-bits/pixel. Therefore, there are altogether 65536 
different colors, each corresponds to certain values of the R, G, and B components. 
This generates naturally a vector of three dimension in (R,G,B). The problem of 
designing a color palette of size L is to choose L representative colors, i.e L (R,G,B) 
values, so that each pixel in the original image will be mapped and displayed using 
one of these L colors which minimizes a certain distortion measure. In the context 
of quantization, the L representative colors are the reconstruction vectors and they 
collectively generate a codebook of L vectors. The mapping of each (R,G,B) value 
can be viewed as quantizing this vector to one of the reconstruction or reproduction 
vectors. Figure 9.4 shows an I6-color palette for the color image "Lenna" and the 
quantized image. 

More formally, an L-level vector quantizer Q is a mapping, 

Q : ''R'^ -> C, (9.5) 

which maps SR̂  to a finite set of reconstruction vectors, y^'s of A^-dimension, called 
the codebook: 

C = { y i , y 2 , . . . , y i } c i R ^ . (9.6) 

The codebook is usually generated using the Linde-Buzo-Gray (LBG) algorithm 
or Generalized Lloyd algorithm (GLA) [169, 82]. 
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Fig. 9.3. Vector Quantization. 

/.,.' 

(a) (b) 

Fig. 9.4. Vector quantization, (a) A 16-colors palette for image "Lenna" (only grey scale values 
are displayed) and (b) the image "Lenna" quantized by the palette. 

9.3.3 Image vector quantization 

In image vector quantization, the image to be encoded is decomposed into (ATj x Â 2) 
nonoverlapping blocks of image pixels as shown in Figure 9.5. For color images, 
each pixel is represented by a vector in a certain color coordinate system such 
as the (R,G,B) system. By packing these components together, we obtain an K-
dimensional image vector X. For the (R,G,B) system, K = Z-{NiX N2)-

For each vector, X, the codebook is searched for the code-vector yfe that mini
mizes a certain distortion measure (i(X, y): 

k = arg min (i(X,yi) 
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Digital Image 

(N^xN-,) Image block 

Index k 

minimize 
distortion 

Code BooI< 
y,i=l,...,L 

Channel 
Table Look

up 

Code Book 
y,i=\,....L 

Fig. 9.5. Image Vector Quantization Block Diagram. 

The index k (instead of y^ itself) is transmitted to the receiver, which also has 
a copy of the codebook C. The codebook table is then looked up to retrieve y^ = 
X, the quantized value of X. Commonly used distortion measures include the MSE 
and the mean absolute error (MAE) (or sometimes called mean absolute difference 
(MAD)) 

MSE:d(X,y , ; 
K 

E (i)^2 
(^i-yf) 

K 

M A E : r f ( X , y , ) = ; ^ | y 
Wi 

(9.7) 

(9.8) 
j=i 

,('0 where K is the dimension of the vector, and yj is the j-lh component of the /-th 
code vector y^. 

In the most primitive form of image VQ, the codebook is usually generated from 
a training set of image vectors that are representatives of the images to be encoded. 
The Linde-Buzo-Gray (LBG) algorithm or Generalized Lloyd algorithm (GLA) is 
frequently used. Since the complexity of the encoder is much higher than that of 
the decoder, image VQ is said to have an asymmetric complexity. In fact, the direct 
computation of (9.7) or (9.8) has a complexity of: 

MSE:L-{2K—1) addition, L-ZsTmultiplication, and ( i —1) compare operations 
(9.9a) 

MAE:L • {2K — 1) addition, L • i i 'absolute , and (L — 1) compare operations 
(9.9b) 

A simple trick to reduce this computation is to stop computing (9.7) or (9,8), 
whenever the partial sum up to an index j is greater than the minimum distortion 
that has been obtained so far. Another more effective solution is to employ VQ with 
certain attractive structures. Examples are multistage-VQ, tree-structure VQ, lattice-
VQ, mean-shape-VQ, etc. More details and other aspects of VQ can be found in 
[82]. 
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Although the arithmetic complexity of the decoder is very low, it also requires the 
storage of the L codebook vectors, which has a storage complexity of LK. For high-
rate applications where L is very large, the required storage can be quite significant. 
The VQ structures mentioned above can also be used to alleviate this problem. 

The simple decoder structure of image VQ makes it an attractive method for 
high-speed application such as real-time playback of compressed videos in an early 
version of Apple QuickTime movie. VQ is also used extensively in speech coding 
and the data compression of IBR such as light fields and Concentric Mosaics. Basi
cally, the light field or mosaic images are compressed by image vector quantization. 
During rendering, the codebook is first loaded into the memory and the indices of 
the required pixels are used to retrieve the reconstruction vectors (image block in 
this case) for interpolation and display. The main advantage of VQ-based method is 
its fast rendering speed. The disadvantage, as mentioned earlier, is its limited com
pression ratio. Other techniques for the compression of light fields and Concentric 
Mosaics will be given in Chapter 12. 
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Image Compression Techniques 

In this chapter, the basic principle of a commonly used technique for image com
pression called transform coding will be described. After a short summary of useful 
image formats, we shall describe two commonly used image coding standards, the 
JPEG and JPEG2000. 

10.1 Image format 

Real world images, such as color images, usually contain different components. For 
color images represented in the RGB color system, there will be three component 
images corresponding to the R, G, and B components. Since the RGB color compo
nent is relatively uniform in terms of quantization, they are frequently employed in 
color sensors with each component being quantized to 8 bits. From the trichromatic 
theory of color mixture, most colors can be represented by three properly chosen 
primary colors. The RGB color primary, which contains the red, green and blue col
ors, is most popular for illuminating sources. The CMY primary is very common 
for reflecting light sources and they are frequently employed in printing (the CMYK 
format). 

Other than the RGB system, there are a number of color coordinate systems such 
as YIQ, YUV, XYZ, UVW, U*V*W*, L*a*b*, and L* [236,127]. Since human 
visual system (HVS) is less sensitive to high-frequency chrominance information, 
the YCbCr color system is commonly used in image coding. The RGB image can be 
converted to the YCbCr color space using the following formula 

Y 
Cb 
Cr 

0.299 0.587 0.114 
-0.169 -0.331 0.500 
0.500 -0.419 -0.081 

(10.1) 

They are related to the YUV color system of the PAL and NTSC systems (see 
Section 11.1 for more details). The resolution of the chrominance components (Cb 
and Cr) is usually reduced by a factor of 2 horizontally and vertically to yield the 
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Fig. 10.1. Transform Image Coding. 

YCrCb-(4:2:0) format in order to obtain a smaller data size (Figure 11.2). Hence, the 
Cb or the Cr components are respectively one-quarter the size of the Y component. 

10.2 Transform coding of images 

The concept of transform coding of images is illustrated in Figure 10.1. For simplic
ity, we will consider grey scale images first. For color images, the original image 
is usually converted to the YCrCb-(4:2:0) format and the same technique for using 
the Y component image is applied to the Cr and Cb component images. The im
age to be encoded is first divided into (A'̂  x A'̂ ) non-overlapping blocks, and each 
block is transformed by a 2D transformation such as the 2D discrete cosine trans
form (DCT). The basic idea of transform coding [319] is to pack most of the energy 
of the image block into a few transform coefficients. This process is usually called 
energy compaction. The transform coefficients are then adaptively quantized. The 
quantized coefficients and other auxiliary information will be entropy coded and 
packed according to a certain format into a bit-stream for transmission or storage. 
At the decoder, the bit-stream is decoded to recover the various information. The 
quantized coefficients are then inverse-transformed to reconstruct an approximation 
of the original image. 

Since the amplitudes of the transform coefficients usually differ considerably 
from each other, it is advantageous to use a different number of quantizer levels (i.e., 
bits) for each transform coefficients. This problem is called the bit allocation prob
lem. The bit allocation amongst the transform coefficients can also vary over time 
to improve the adaptability of the coder to changing input characteristics. The bit 
allocation problem is discussed in [129, 266, 82]. It can be shown that the optimal 
transformation is called the Karhunen Loeve transform {KLT) [129]. Unfortunately, 
the KLT, which is constructed from the eigenvectors of the input covariance matrix, is 
signal dependent. Due to its high computational complexity, sub-optimal transforma
tion with fixed coefficients such as the DCT is frequently employed. Another reason 
for using DCT is its good coding performance and availability of fast implementa
tion algorithms [242]. For implementation simplicity, a separable transformation is 
frequently used. For example, the 2D separable DCT and inverse DCT (IDCT) can 
be written respectively as 
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(10.2) 
where fci, ̂ 2 = 0,.. . , A'' — 1 and c{k) = l / \ / 2 for fc = 0, and 1 otherwise. 

X-> V-^ c(fci)c(fc2) „^, , , / 7r(2ni + l)A;i \ / 7r(2n2 + 1)A:2 
x(n,, na) = 2 ^ 2 ^ ^̂  X{ki, fe) cos , ^ , .w= , ^ 

fcl=0fc2=0 ^ ^ ^ 

(10.3) 
where a;(ni,n2) and X{ki,k2), rii.n^ = Q,...,N ~ 1, are respectively the input 

and transformed image blocks. For image and video coding, N is usually chosen as 
8 to reduce blocking artifacts. 

The above transformation can be performed by applying ID DCT along the rows 
of the 2D data block, followed by ID DCT along the columns. The order is immate
rial, which means that the result is the same if column transformation is carried out 
first. Figure 10.2 shows the basis functions of the 2D DCT. It can be seen that they 
resemble the sinusoidal signals and the frequencies increase as fci (horizontal nor
malized frequency) and ̂ 2 (vertical normalized frequency) increase. A-i = k2 = Q 
corresponds to the DC component (top left corner in Figure 10.2), while the others 
are AC components. 

As mentioned earlier, 2D-DCT is commonly used because of its good perfor
mance and availability of fast algorithms. It is adopted in a number of interna
tional coding standards including JPEG image coding standard, MPEG-1, MPEG-2, 
MPEG-4, H.261, and H.263 video coding algorithms. More recent standards such 
as H.264 uses integer approximation to DCT as well as variable image block size. 
Since image-based representations are usually a collection of images and videos, 
these techniques also form the basis for IBR compression. 
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Quantization 

There are a number of methods to encode the transform coefficients. For example, a 
popular method is to employ scalar quantization followed by run-length and entropy 
coding. Alternatively, VQ or embedded zero-tree coding can be applied [331]. For 
simplicity, we only describe the first approach, which is employed in the JPEG-
Baseline coding. Similar methods are also employed in other video coding standards. 
Consider an (8 x 8) luminance (Y) block, x, as shown in Figure 10.3. Most coding 
standards require the image pixels be preprocessed to have a mean of zero. For RGB 
color space, all color components have a mean value of 128 (8-bit /pixel). In YCbCr 
color space, the Y component has an average value of 128, while the chrominance 
components have an average value of zero. Therefore, we subtract 128 from each 
element of x before taking the 2D DCT. This gives X in Figure 10.3. 

The (0,0) entry of X (top left corner), X{0,0), is the DC value of the block x. It 
can be seen that most of the signal energy is now concentrated in the low frequency 
transform coefficients, while most of the high frequency components are of small 
amplitudes. Significant compression can therefore be obtained by quantizing the ele
ments of X. In the JPEG standard, uniform quantizers are employed and the stepsizes 
are specified in form of a matrix, called the quantization matrix. An example quanti
zation matrix is: 

e = 

16 11 10 16 
12 12 14 19 
14 13 16 24 
14 17 22 29 
18 22 37 56 
24 35 55 64 

24 
26 
40 
51 
68 
81 

40 51 
58 60 
57 69 
87 80 
109 103 
104 113 

61 
55 
56 
62 
77 
92 

(10.4) 

49 64 78 87 103 121 120 101 
72 92 95 98 112 100 103 99 

The (fci, fc2) entry of Q, q{ki,k2), is the quantizer stepsize for the {ki,k2) trans
form coefficients (i.e., the (fci, k2) entry of X). In other words, the quantized (fci, k2) 
transform coefficients is 

;(fci ,fc2)=rowzrf(^g;;g 

ki,k2 
9(fcl,fc2) 

0,1,...,7. 
(10.5) 

Note, the quantization stepsizes for high frequency components are much larger 
than those for low frequencies. This is because the human visual system is less sen
sitive to high frequency components (also called frequency sensitivity). Therefore, 
more quantization errors can be tolerated in these less sensitive components to yield 
a better compression ratio. For the transformed block X described above, the quan
tized DCT coefficients, Z, are shown in Figure 10.3, where the (fci, k2)-eniry of Z 
is z{ki, ^2). The design of Q is usually based on psychovisual characteristics and 
the compression ratio required. In fact, each element of matrix Q in (10.4) is the 
visibility threshold of the corresponding transform coefficient, below which its spa
tial waveform on a plain background is usually not noticeable to human eyes [173]. 
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Fig. 10.3. Scalar quantization in transform coding of images. 

To achieve a higher compression ratio, a quality factor q, called the 17-factor, can be 
multiplied with Q to form a new quantization matrix with larger stepsizes. 

Since the non-zero quantized coefficients are sparsely distributed, it is more effi
cient to represent them using run-length coding. The run-length code and the quan
tized coefficients can then be entropy coded using Huffman or arithmetic coding. 
This will be explained in more details when we describe the JPEG standard in the 
Section 10.3. 

To recover the quantized coefficients, we can multiply z[k\, ^2) with the corre
sponding stepsize q{h.\, ^2). This is called inverse quantization, which can be written 
as 

z{ki,k2) •= z{ki,k2)q{ki,k2), fci, ^2 = 0 , 1 , . . . ,7 . (10.6) 

Taking 2D IDCT of z{ki, k2) and adding 128 to each element gives the recon
structed image block x{ki, ^2)- This is illustrated in Figure 10.3. Figure 10.4 shows 
the compression results of the JPEG Baseline algorithm which is based on DCT-
based transform coding. At high to medium bit rates, the quality of the reconstructed 
images is very good visually. At low bit rates, significant coding artifact called "block 
effect" starts to appear as shown in Figure 10.4(d). This is mainly caused by the in
dependent coding of the image blocks. At low bit rate, the coding errors will show 
up as discontinuities along the block boundaries. We shall focus on two commonly 
used image coding standards namely JPEG and JPEG2000 in this section. 
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Fig. 10.4. The compression results of JPEG algoritlims. (a) original image "Lcnna," (b) JPEG 
Baseline compressed to 0.93 bpp, (c) JPEG Baseline compressed to 0.38 bpp, (d) JPEG Base
line compressed to 0.23 bpp, (e) JPEG-2000 compressed to 0.38 bpp and (f) JPEG-2000 com
pressed to 0.23 bpp. 
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10.3 JPEG standard 

The JPEG (Joint Photographic Experts Group) standard is an ISO/IEC international 
standard (10918-1) for Digital compression and coding of continuous-tone still im
ages. It is also an ITU standard known as ITU-T Recommendation T.81. To satisfy 
different requirements in practical applications, the standard defines four modes of 
operation: 

• Sequential DCT-based: This mode is based on DCT-based transform coding 
with a block size of (8 x 8) for each color component. The transform coefficients 
are runlength and entropy coded. A subset of this mode is the Baseline Mode, 
which is an implementation with a minimum set of requirements for a JPEG 
compliant decoder. 

• Progressive DCT-based: This mode is similar to the sequential DCT-based al
gorithm, except that the quantized coefficients are transmitted in multiple scans. 
By partially decoding the transmitted data, this mode allows a rough preview of 
the transmitted image to be obtained at the decoder having a low transmission 
bandwidth. 

• Lossless: This mode is intended for lossless coding of digital images. It uses 
a prediction approach, where the input image pixel is predicted from adjacent 
encoded pixels. The prediction residual is then entropy-coded. 

• Hierarchical: This mode provides spatial scalability and encodes the input image 
into a sequence of increasing resolution. The lowest resolution image can be 
encoded using either the lossy or lossless techniques in other mode, while the 
residuals are coded using the lossy or DCT-based modes. 

JPEG supports multiple component images. For color images, the input image 
is usually in RGB and other formats like luminance and chrominance representation 
(YUV, YCbCr), etc. The color space conversion process is not part of the standard, 
but most codecs employ the YCbCr system because the chrominance components 
can be decimated by a factor of two in the horizontal and vertical dimensions to 
achieve a better compression performance. 

Either Huffman or arithmetic coding techniques can be used in the JPEG modes 
(except the Baseline mode, where Huffman coding is mandatory) for entropy coding. 
The arithmetic coding techniques usually perform better than the Huffman coding in 
JPEG, while the latter is simpler to implement. For Huffman coding, up to 4 AC 
and 2 DC tables can be specified. The input image to JPEG may have from I to 
65,535 lines and from 1 to 65,535 pixels per line. Each pixel may have from 1 to 255 
color components except for progressive mode, where at most four components are 
allowed. For the DCT modes, each component pixel is an 8 or 12 bits unsigned inte
ger, except for the Baseline mode, where 8-bit precision is allowed. For the lossless 
mode, a range from 2 to 16 bits is supported. A brief summary of the lossless and 
sequential DCT-based coding modes will be summarized below. Interested readers 
are referred to [ 118] and [228] for more details. 
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Fig. 10.5. Block diagram of a JPEG baseline encoder. 

10.3.1 Lossless mode 

In the lossless mode, pixels are coded in raster scan, from left to right and from top 
to bottom. The image pixel to be encoded is predicted from adjacent and previously 
encoded pixels to form a prediction residual, which is then Huffman or arithmetic 
coded. Consider the encoding of pixel x in the following template. 

c b 
a\x 

It can be predicted from pixels a, h, and c using one of the following predictors y: 

y = 0, y = a, y = b, y = c, 

y = a + b + c, y ~ a • y = b + y 
2 ' " • 2 ' •' 2 

The prediction residual isr = y ~ x and the predictor used is specified in the header 
of the data stream. The prediction residuals are encoded by either a Huffman or an 
arithmetic coder. The Huffman code used in lossless JPEG is a modified Huffman 
code, which divides the prediction residuals into categories with increasing ampli
tude. It consists of a pair of symbols: category and the magnitude (similar to Ta
ble 10.1). The category is Huffman coded, while the magnitude is binary coded. The 
compression ratio is typically around 2:1, which is much smaller than lossy modes, 
such as the sequential-DCT mode. The lossless mode of JPEG or JPEG2000 [123] 
is useful to the lossless compression of depth maps in image-based representations. 

10.3.2 Sequential DCT-based coding 

Since the Sequential DCT-based coding differs from the baseline mode mainly in 
the resolution of the image pixels, the maximum number of color components, and 
the number of user supplied coding tables, we focus on the baseline mode which is 
required in every JPEG compliant decoder. 
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Baseline sequential DCT 

Figure 10.5 shows the block diagram of a JPEG basehne encoder. As mentioned ear
lier, the Baseline mode is a subset of the Sequential DCT mode. It operates on 8-bit 
pixels, 8-bit quantizer precision, one to four color components, and uses Huffman 
coding with up to 2 AC and 2 DC Huffman tables. The idea of imposing this basic 
requirement is to ensure interoperability between codecs from different manufactur
ers. 

The input image is first divided into (8 x 8) non-overlapping blocks of compo
nent samples. The image blocks are scanned in a raster scan order, i.e., from left to 
right and from top to bottom. After subtracting the mean value, each block is trans
formed by the 2D DCT. The transform coefficients are then quantized according to 
a quantization table. The encoder can transmit up to 4 quantization tables with 8-bit 
resolution (for sequential-DCT mode, up to 8 users supplied Huffman tables can be 
defined). JPEG also includes a table which yields good results for CCIR-601 type 
images. Most applications use this table as a basis for quantizing the transform co
efficients. For example, a common approach to increase the compression ratio is to 
multiply a q-factor to this matrix to obtain a quantization matrix with larger quanti
zation stepsizes. The chrominance quantization table is given by (10.7). 

Qc 

16 18 24 47 99 99 99 99 
18 21 26 66 99 99 99 99 
24 26 56 99 99 99 99 99 
47 66 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 
99 99 99 99 99 99 99 99 

(10.7) 

Table 10.1. Example JPEG Huffman code table for luminance DC difference. 

Category 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Code Length 

2 
3 
3 
3 
3 
3 
4 
5 
6 
7 
8 
9 

Code Word 

00 
010 
Oil 
100 
110 
1110 

11110 

111110 

1111110 

11111110 

111 111110 

1111111110 

D C Coeff Difference 

0 

-1,1 

-3,-2,2,3 

-7, 
-15, 

-31,-

-63,-

-127,-

-255,- • 

-511,-• 

-1023,-• 

••,-4,4,--

••,-8,8,̂ -

•,-16,16,-

•,-32,32,-

-,-64,64,-

,-128,128, 

,-256,256, 

,-512,512, 

,7 
,15 

-,31 

-,63 

-,127 

• -,255 

--,511 

--,1023 

-2047,-••,-1024,1024,-••,2047 
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Fig. 10.6. Zig-zag scanning order for coding AC coefficients in JPEG. 

Coding of DC coefficients 

Since the DC coefficient corresponds to the average intensity of a block, DC co
efficients of adjacent blocks are likely to have similar values. Therefore, differential 
coding of DC coefficients is employed and the residuals or differentials are coded us
ing modified Huffman code as shown in Table 10.1 (only the luminance component 
table is shown). For 8-bit-per component pixel, the range of the DC differentials is 
[—2047,2047], and it is divided into 12 categories. As an example, suppose that the 
DC differential is 195, then, from Table 10.1, it belongs to category 8. The binary 
part (also known as variable-length integer VLI) is 11000011 and the Huffman code 
of category 8 (variable-length code VLC) is 111110. The final result is the concate
nation of VLC-VLI, i.e., 111110 11000011. 

Coding of AC coefficients 

For 8 bits per component pixel, the range of the AC coefficients is [—1023,1023]. 
Similarly, a modified Huffman code is used and there are 10 categories and each 
coefficient is represented as (category, amplitude). Since AC coefficients are mostly 
concentrated at low frequencies and most of them are zeros, they are run-length 
coded following a zig-zag scanning order as shown in Figure 10.6. Each nonzero 
coefficient in the scan can be represented as (run, category, amplitude), where run 
is the number of zero AC coefficients preceding this nonzero coefficient, category 
and amplitude specify the quantized AC coefficient. To further improve the coding 
efficiency, the {run, category) is jointly Huffman coded. An example Huffman table 
is shown in Table 10.2. Two additional symbols are included in the Huffman code: 
the End-of-Block (BOB) symbol and zero-run-length (ZRL) symbol. BOB indicates 
that all remaining coefficients in the scan are zero. It is unnecessary to send the code 
if the last coefficient of the zigzag scan (i.e k\ = 7, ^2 = 7 ) is nonzero. To avoid a 
lengthy Huffman table, the {run, category) Huffman table only specifies a run-length 
up to 15. For a run-length greater than 15, a ZRL symbol is sent to indicate a run of 16 
zeros. As an example, suppose that there are six zeros preceding the AC coefficient 
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Table 10.2. Example JPEG Huffman code table for luminance AC coefficients. 

Zero Run/ 
Category 
0/0 (EOB) 

0/1 
0/2 
0/3 
0/4 
0/5 

0/A 
1/1 
1/2 
1/3 
1/4 

1/A 

Code 
Length 
4 
2 
2 
3 
4 
5 

16 
4 
6 
7 
9 

16 

Code Word 

1010 
00 
01 
100 
1011 
11010 

1111111110000011 
1100 
111001 
1111001 
111110110 

1111111110000011 

Zero Run/ 
Category 
2/1 
2/2 

2/A 
3/1 
3/2 

3/A 

E/A 
F/0 (ZRL) 

F/A 

Code 
Length 
5 
8 

16 
6 
9 

16 
11 

16 

Code Word 

11011 
11111000 

1111111110001110 
111010 
111110111 

1111111111110110 
lllllIllOOl 

1111111111111110 

and the value of the nonzero coefficient is -18. 18 belongs to category 5 and its VLI 
value is 0110 1, the run/category code for 6/5 is 1101. The final result is 1101 01101. 

10.4 The JPEG-2000 standard 

The JPEG-2000 standard [123] defines a set of lossless (bit-preserving) and lossy 
compression methods for coding continuous-tone, bi-level, grey-scale, or color dig
ital still images. It not only provides better compression of images over the JPEG 
standard, but also provides greater flexibility in extracting the compressed data for 
editing, processing and targedng particular devices and applications. Also, the com
pressed codestream can be arranged so that the encoded image can be reconstructed 
at a lower resolution or bit-rate, and at specific regions of interest (ROI). This allows 
the matching of a codestream to the transmission channel, storage device, or display 
device, regardless of the size, number of components, and sample precision of the 
original image. The packet and layer structures of the standard provide certain de
grees of random access to the compressed bit stream. This considerably speeds up the 
rendering of image-based representations compressed by wavelet type coder. More 
details on the application of the related wavelet coding methods for compressing 
Concentric Mosaics can be found in [175, 328]. 

JPEG-2000 is divided into 12 Parts. Part-1 was published as an international stan
dard [123j and it specifies the minimum compliant decoder, which should be used 
to provide maximum interchange. Part-II is optional, and it includes a valued-added 
extension not required in all implementations. Notable differences with Part-I in-
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Table 10.3. Features in Part-I of the JPEG-2000 standard. 

Bitstream 
Arithmetic coder 
Coefficient modelling 
Quantization 

Transformation 

Component transformation 

Error resilience 
Bit-stream ordering 

Compressed domain processing 

Fixed and variable length markers 
MQ-coder 
Independent coding of fixed size blocks 
Scalar quantizer with dead-zone and truncation of 
code-blocks 
Low complexity La Gall (5,3) integer wavelet, or high 
performance Daubechics (9,7) floating point wavelet. 
Reversible component transforms (RCT), YCbCr 
transformation. 
Resynchronization markers 
Progressive transmission by tile-part, then SNR, or 
resolution, or component. Random (spatial) access to 
the bitstream. Region of interest coding. 
Examples: rotation and cropping 

Original 
Image Data 

Pre-
Proces.sing 

Discrete 
Wavelet 

Transforin 

Uniform 
Quantization 

Adaptive Binary 
Arithmetic Coder 
(Tier-1 Coding) 

Bit-stream 
Orgainization 

(Tier-2 Coding) 

Compressed 
Image Data 

Fig. 10.7. Block diagram of JPEG-2000 encoder. 

elude the use of Trellis Coded Quantization (TCQ), new markers, user defined filters, 
arbitrary point transform or reversible wavelet transform across components, fixed 
length entropy coder and repeated headers for error resilience, and more flexibility 
in incorporating metadata. Main features in Part-I of the standard are summarized 
in Table 10.3. Readers are referred to [184, 132J for information on the JPEG-2000 
development process and other aspects of JPEG-2000. A comprehensive reference 
on JPEG-2000 is [294]. 

10.4.1 JPEG-2000 compression engine 

Figure 10.7 shows the general block diagram of the JPEG 2000 encoder. After pre
processing for different component images, the discrete wavelet transform is applied 
to decorreiate the source image. The transform coefficients are then uniformly quan
tized and entropy coded before packing into an output bitstream for storage or trans
mission. In the decoder, the bitstream is first entropy decoded, dequantized, and in
verse discrete wavelet transformed to construct the image data. The functional blocks 
will be briefly described below. 
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Preprocessing 

JPEG-2000 supports multiple-component images (e.g., RGB), each possibly sub-
sampled by a different factor. The input image is divided into tiles, which are rectan
gular and non-overlapping arrays of component images making up the same relative 
portion of the image. Each tile of a component image must be of the same size, except 
those around the border of the image. Tiling of the image creates tile-components that 
can be decoded, reconstructed and extracted independently. It also provides one of 
the methods for extracting a region of the image called tile. 

The unsigned sample values in each component are level shifted by subtracting a 
fixed value from each sample to make its value symmetric around zero. When encod
ing multiple component images in say RGB format, a point-wise decorrelating trans
form may be used to decorrelate the color components for better compression. Part-I 
of the standard supports two component transformations: an irreversible component 
transformation (ICT), based on the YCbCr transform commonly used in JPEG for 
lossy coding, and a reversible component transformation (RCT) that may be used for 
both lossless or lossy coding. 

Forward RCT: 

Y=[\{R + 2G + B)\ 
Cb = B-G 
Cr-=R-G 

Inverse RCT: 

G = Y-[\{Ch + Cr)\ 
R = Cr + G 
B = Cb + G 

Discrete wavelet transform (DWT) 

Given a tile, an L-level dyadic DWT is performed on each component image. The 
DWT involves a bank of filters, or filter banks, which decompose the image into four 
sub-images, or subbands, corresponding to the horizontal low frequency and verti
cal low frequency (LL), horizontal high frequency and vertical low frequency (HL), 
horizontal low frequency and vertical high frequency (LH), and horizontal high fre
quency and vertical high frequency (HH) components of the image. This composition 
can be applied successively to the LL subbands to obtain a series of subband signal 
at different resolutions. A two-level decomposition of the image "Lenna" is illus
trated in Figure 10.8(a). The DWT can be irreversible or reversible. The default irre
versible transform defined in Part-I is the Daubechies (9,7) DWT [5], while the de
fault reversible transformation is implemented by Le Gall 5-tap/3-tap filter bank [78, 
1]. Multiple wavelets including "user defined" are allowed in Part II. A lower recon
structed resolution image can be generated by decoding a selected subset of these 
sub-bands up to a certain level. 
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Quantization and partitions 

After DWT, most of the coefficients are very small and they can be quantized to yield 
a more compact representation. This operation can be made lossless, if a quantiza
tion step of 1 is used together with the reversible integer 5/3 wavelet, because the 
output of the latter are integers. For lossy compression, all the wavelet coefficients 
will undergo uniform scalar quantization with a fixed deadzone. The quantized out
puts are in sign-magnitude representation. One quantization step size, which can be 
selected by the user to achieve a given level of quality, is allowed to quantize all 
the coefficients for each subband. To achieve a fixed rate, the default behavior of the 
verification models (VM), which are reference implementations of the standard, is 
to quantize each coefficient rather finely, and makes use of subsequent truncation of 
embedded bitstreams to achieve the desired rate. 

Level 0 Level 1 Level 2 Level 3 
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(a) (b) 

Fig. 10.8. (a) 2-level wavelet decomposition of the image "Lenna". (b) Example packet parti
tion location and code-blocks showing twelve code-blocks of one packet partition location at 
resolution level 2 subband in a three level dyadic wavelet decomposition. The packet partidon 
location is marked in dark thick lines. 

To provide a finer granularity than tiles in supporting medium-grain level of spa
tial locality in the bitstream for efficient memory implementation, streaming, and 
random access to the bitstream, each subband can be further divided into regular 
non-overlapping rectangles called "packet partition" as shown in Figure 10.8(b). In 
this example, three spatially consistent rectangles, one from each subband at the same 
resolution level, comprise a packet partition location. Each packet partition location 
is further divided into regular non-overlapping rectangles called code-blocks, which 
is the basic unit of entropy coding. These rectangular arrays of coefficients can be 
extracted independently. 
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Block coding 

Each code-block will be independently entropy coded using a context-dependent, 
binary, arithmetic coding of bitplanes. The MQ-coder from JBIG2 standard [122], 
which is an ISO Standard for coding bi-level images, is employed. A bit plane of a 
code-block is obtained by extracting a given binary digit of all its quantized coeffi
cients. The first bitplane consists of the MSB of all the magnitudes, followed by the 
next bit plane until the least significant digit. Starting from the first bitplane which 
has a nonzero coefficient, each bit-plane is coded in three coding passes: 

1. significant propagation pass : a location is coded if it is not significant, but at 
least one of its eight-connected neighbors is significant. 

2. refinement pass : all significant locations detected in previous bitplanes are 
coded. 

3. clean-up pass : take care of any bits not coded in the first two passes (say a " 1 " 
without significant neighbors). 

A location is significant if a " 1 " has been coded for that location in the current 
or previous bitplanes. The coding in the first and the third passes is identical, except 
that run length coding will sometimes be employed in the third pass. Each of these 
coding passes collects contextual information about the bit-plane data, which will be 
used by an MQ-arithmetic coder to encode the bit-stream. Unlike JBIG and JBIG2, 
JPEG-2000 uses no more than nine contexts to code any given type of bit in order 
to speed up the probability adaptation. (For more details of context based arithmetic 
coding, see the binary shape coding of MPEG-4 standard in Section 11.4.5.) 

10.4.2 Bit-stream organization 

The collection of certain bitplanes, called sub-bitplanes, from the code-blocks in a 
given packet partition location forms the body of a "packet". The packet structure 
corresponding to the packet partition location in Figure 10.8(b) is shown in Fig
ure 10.9. A packet consists of a packet header, which contains the following infor
mation: block inclusion information, which indicates whether data is presence for 
a given code-block, the number of completely zero bitplanes for each block, the 
number of sub-bitplanes included in the packet for each block, and the number of 
bytes used to store the coded sub-bitplanes of each block. More details on the header 
structure and code method can be found in [294]. Each code-block can contribute 
a different number of sub-bitplanes (it can be zero) to the packet. Hence, a packet 
can be viewed as one quality increment for one resolution level at a certain spatial 
location. 

A collection of packets, one from each resolution level and packet partition lo
cation, constitutes a "layer". Thus, it can be viewed as one quality increment for the 
entire image at full resolution. All the packets from a tile are interleaved in one of 
several orders and placed in one, or more, tile-parts. The tile-parts have a descrip
tive tile-part header and can be interleaved in any order. The codestream has a main 
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Fig. 10.9. Packet structure for the packet partition location in Figure 10.8(b). 

header at the beginning that describes the original image and the various decompo
sition and coding styles that shall be used to locate, extract, decode, and reconstruct 
the image with the desired resolution, fidelity, region of interest, and other character
istics. 

10.4.3 Progression 

While JPEG offers several methods for generating progressive bitstreams for pro
gressive transmission, progression in JPEG-2000 is simply achieved by ordering the 
packets of compressed information within the bitstream, which are coming from 
different resolutions, quality, spatial locations, and components. For example, to 
achieve SNR scalability or progression by SNR, the bitstream can be ordered in 
layers, one after the other. Inside each layer, the compressed information for each 
component image can be transmitted successively. Likewise, inside a particular com
ponent image, the compressed information can be transmitted by resolution levels. 
Finally, inside one resolution level, one can send the compressed data for different 
partition locations. In other words, the bitplanes of the subband coefficients of the im
age are transmitted successively. The progression type can also be changed at various 
parts within the bitstream. One interesting feature of JPEG-2000 is that the progres
sion type of the bitstream is defined by markers in the bitstream. A parser can be used 
to read all the markers and change the type of progression, by changing the markers 
and other auxiliary information, without having to run the MQ-coder, the context 
model, or even decode the block inclusion information. The flexible bitstream struc
ture of JPEG-2000 therefore simplifies considerably the editing and processing of 
the compressed information. Other important features of JPEG 2000 include region 
of interest (ROI), error resilience, and visual frequency weighting [123]. 

10.4.4 Performance 

JPEG-2000 provides better rate-distortion performance than the JPEG standard at 
any given bit rate. The greatest improvement, however, is observed at very high and 
very low bitrates. Some compression results of JPEG-2000 for the image "Lenna" 
are shown and compared with JPEG in Figure 10.4. The key advantage of JPEG-
2000 is its flexibility in progressive transmission over progressive JPEG. Basically, 
only the order of the compressed data, but not the data itself, is changed and the 
performance is almost identical to the performance of using a single layer optimized 
at the same rate. The loss is mainly due to the increased overheads for the additional 
layers. JPEG-2000 produces much less blocking artifact and hence a better visual 
quality at low bit rate than the JPEG Baseline algorithm. 
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On the other hand, JPEG-2000 requires considerably higher computational com
plexity than JPEG. This is mainly associated with the multi-pass bitplane context 
model and arithmetic entropy coder. JPEG-2000 also requires more memory than 
sequential JPEG. 

For lossless compression of continuous-tone images, the performance of JPEG-
2000 is similar to JPEG-LS [121] , but substantially better than JPEG lossless. For 
images with text and graphics, JPEG-LS is significantly better than JPEG lossless 
and JPEG-2000. The performance of the (9,7) wavelet is usually much better than 
the (5,3) wavelet, while the latter is simpler to implement. 

10.5 Appendix: VQ structures 

In this appendix, we describe multistage VQ, tree structure VQ, and lattice VQ. 

10.5.1 Multistage VQ 

In multistage VQ, the input vector is successively quantized (also called successive 
approximation) by a set of codebooks. This is illustrated in Figure 10.10, where the 
input vector X is first quantized by a codebook CI of size Li to obtain a reproduction 
vector XQ. The residual or error vector RQ = X — XQ is then quantized by another 
codebook C2 of size L2 to give X] . The indices Jp and Ii for XQ and Xi, respec
tively, are sent to the receiver. At the receiver, X is reconstructed as XQ + X ] , and 
the quantization error is Ri. More stages can be used to reduce the quantization error 
to a sufficiently small value. It can be seen that the number of effective codevectors 
is Lj • L2, although only Li+ L2 different codevectors need to be stored. This gives 
a significant saving in storage as compared with a codebook with size Li • L2- The 
encoding complexity is also drastically reduced. According to (9.9a), the encoding 
complexity of this 2-stage MS-VQ is 

MSE:(Li + L2) • {2K - 1) addition, (Li + L2) • isTmultiplication, 
and (Li -1-^2 — 2) compare operations; 

The encoding complexity for a codebook of the same size will require 

MSE:(Li • L2) • {2K - 1) addition, (Li • L2) • JsTmultiplication, 
and {Li • L2 — 2) compare operations; 

(10.8) 

(10.9) 

Also, the number of stages can be made adaptive to provide more flexibility in 
achieving the given rate or distortion constraints. 
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Fig. 10.10. Two-stage VQ 

10.5.2 Tree structure VQ (TSVQ) 

In designing a codebook using the LBG algorithm, the computational time is usually 
very long and good initial values of the code vectors are required in order to converge 
to a good local minimum. Usually, the mean of the training vectors is first computed 
and it is then split successively to more codevectors. Tree structure VQ is originally 
proposed for reducing the complexity in searching a codebook for the optimal code 
vector by arranging the codevectors as a binary tree (or more generally a K-A tree 
with K instead of two branches per node) as shown in Figure 10.11. Later, it was 
found that the concept of tree-structure VQ can also be used to generate efficiently 
codebooks with good performance. 

; Training vectors n Representative veelors Xj 

(a) (b) 

Fig. 10.11. (a) Binary decision tree of Tree structure VQ (b) Partitioning of training vectors in 
the arbitrary hyperplane codebook generation algorithm. 

First, the training data is divided using a hyperplane Pi given by 

Pi : h'f X + A = 0 
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into two partitions corresponding to those vectors respectively on the left and right 
of the plane. This division can also be viewed as designing a codebook with two 
elements. Then, one of these partitions will be chosen according to a certain criterion 
for further subdivision, e.g. Pi as shown in Figure 10.11(b). The process repeats at 
each stage by choosing an appropriate partition for subdivision, until the desired 
number of partitions (i.e number of codevectors) is obtained. In Figure 10.11(b), 
five code vectors are employed. According to the centroid condition, the mean of 
each partition yields one code vector of the codebook. This partitioning can also be 
represented by a binary decision tree as in Figure 10.11(a). Moreover, it can be used 
to perform codebook searching. Given an input vector x to be quantized, the decision 
tree is transversed and at the !-th tree node, the following decision is made: 

h f X 4- ft < 0 
^'- h f x + ft > 0 ' 

to determine which branch of the tree should be transversed. The codevector asso
ciated with the leaf node where the search terminates is the quantized value of this 
vector. The worse case encoding complexity of a TSVQ is only 

MSE:D • {K — 1) addition, D • /•C multiplication, and D compare operations, 
(10.10) 

where D is the depth of the tree. If the tree is balanced, then D = logj L. Interested 
readers are referred to [34] for determining the hyperplanes and related references. 

10.5.3 Lattice VQ 

In uniform scalar quantization (SQ), the real line is partitioned into intervals with 
equal length. The regularity of uniform SQ considerably simplifies its encoding and 
decoding. A generalizafion of uniform SQ to mulfidimensional space is called a lat
tice vector quantization (LVQ). The code vectors are obtained from the lattice points 
of a structure called lattice. An «-dimensional lattice, yl„, is defined as 

yl„ = { x e i ? ' " | x = G - z , z e Z"} , (lO.U) 

where G is the (m x n) generator matrix of the lattice (m > n). Thus, the lattice 
points are generated by integer combination of the column of G, {g'is}: 

n 

x = G-z = ^giZi, Zi£ Z. (10.12) 

Examples of lattices include D„, Eg, and A„: 

n 

D„ = {x G Z" \Y^Xi= even number}. (10.13) 
1=1 

The lattice points are those points in the Z" with coordinate sum being an 
even number. Eg, is obtained by the union of the Ds lattice and its coset [Dg + 

l 2 ' 2 ' 2 ' 2 ' 2 ' 2 ' 2 ' 2 ' ' ' J ' 
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^8 = I>8 U [Ds + ( i , | , i , i , i , 1, i , i , )]. (10.14) 

A coset is obtained from a lattice by adding a fixed vector to its lattice points. It 
can be shown that for a smooth pdf and sufficiently fine quantization, a LVQ derived 
from the densest sphere paclcing can approach the minimum squared quantization 
error for a given entropy [333]. In 2- and 3-dimensions, A2 (hexagonal lattice) and 
A3 are known to yield densest sphere packing. In higher dimensions, only E^ and 
the leech lattice (24 dimensions) are known to give densest sphere packing. Eg, and 
other lattices have been proposed for coding subband coefficients [86]. Interested 
readers are referred to [52, 53, 278] for fast encoding and decoding algorithms of 
several lattices and other aspects of sphere packings. 



n 
Video Compression Techniques 

In this chapter, we turn to video compression techniques. First of all, the basic con
cept and techniques of video compression will be briefly reviewed in Sections 11.2 
to 11.3. A brief survey of various video coding standards is given in Section 11.4. 

11.1 Video formats 

In this section, we describe formats for analog and digital videos. 

11.1.1 Analog videos 

In composite analog video (CAM) such as NTSC (National Television Systems 
Committee), PAL (Phase Alternation Line), and SECAM (Systeme Electronique 
Color Avec Memoire), each primary is considered as a separate monochromatic 
video signal. 

In the NTSC receiver primary system (RN, GJV, BN), which was developed as 
a standard for television receivers, three phosphor primaries that glow in the red, 
green, and blue regions of the visible spectrum were adopted. R^, GM, BN range 
from 0 to 1 and they indicate the excitation of the phosphor, 0 indicates no excitation 
and 1 indicates maximum excitation. The reference white corresponds to Ri^ = GM 
= Bjv = 1. The luminance is the sum of the luminance of the red, green, and blue 
phosphors and is given by: 

Y = 0.299 • RN + 0.587 • GN + 0.114 • B^. (11.1) 

It has a scale from 0 to 1 and the weighting indicates the relative contributions of 
the primaries to the total luminance. The color information can be expressed as the 
chrominance components. The advantage of the luminance-chrominance representa
tion is that the human visual system is less sensitivity to high frequency chrominance 
components, and their bandwidth can be reduced to save transmission bandwidth. For 
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instance, in the NTSC transmission (Y,I,Q) system, the I and Q chrominance signals 
defined below 

0.299 0.587 0.114 
0.596 -0.274 -0.322 
0.211 -0.523 0.312 

RN 
(11.2) 

occupy respectively 1.6 and 0.6 MHz bandwidth, while the Y component has a band
width of 4.2MHz. A related chrominance representation called the YUV color dif
ference coordinate system is used in the PAL color TV systems. The U and V signals 
are expressed as a set of color differences: 

U = 0.493(Bjv - Y)] (11.3) 

V = Q.%n{RN -Y). (11.4) 

The SECAM system uses the YDbDr coordinate, where Db and Dr are related to U 
and V by Db = 3.059U, Dr = -2.169V. 

The U and V signals are related to the I and Q signals by a simple rotation in the 
color space. 

/ = -?7sin(33°)-f-ycos(33°), (11.5) 

Q = [/cos(33°) + y sin(33°). (11.6) 

11.1.2 Digital videos 

Digital videos can be obtained directly from digital cameras or by digitizing analog 
video signals. In digital cameras (e.g., using CCD sensors), video signals are digi
tized into image frames at regular interval T, as shown in Figure 11.1(a). The frame 
rate is equal to 1/T. Each frame is represented as a rectangular array of pixels. The 
number of horizontal line and pixel per line defines the resolution of the image or 
video. In Figure 11.1(a), the resolution of the video is A'̂ i x N2- For color videos, 
each pixel is represented by its color components. 

To save transmission bandwidth, a traditional analog video system employs an 
interlaced scanning method, where the even and odd lines of an image frame are 
transmitted alternately as shown in Figure 11.1(b). In progressive scanning, each im
age frame contains both the odd and even lines. Early video coding standards usually 
work with the progressive scanning format and hence conversion from interlaced to 
progressive scanning is required. On the other hand, more recent standards such as 
MPEG-2 and H.264 are able to handle both progressive and interlaced scanning. 



Video Compression Techniques 209 

Frame n Frame n+1 Frame n+2 Frame n+3 

(a) 

Progressive scanning 

(b) 

Fig. 11.1. Digital videos (a) as sequence of images (b) interlace and progressive videos. 

11.1.3 ITU-T BT.601 (formerly CCIR601) 

In order to exchange digital videos between different applications and products, dif
ferent standardized formats have been developed for digital videos. For example, 
to permit international exchange of production-quality programs digitalized from 
various analog video systems, the International Telecommunications Union - Ra
dio Sector (ITU-R) (formerly known as International Radio Consultative Committee 
(CCIR)) developed a digital video format for TV studios with 4:3 and 16:9 aspect ra
tios, known as the BT.601 recommendation. The 4:3 aspect ratio version is formerly 
known as the CCIR601 format, which we shall briefly discuss. 

In order to match the horizontal and vertical sampling resolution for the 525-
line NTSC, and 625-PAL/SECAM systems, the sampling frequency is chosen as 
13.5MHz, which is an integer multiple of the horizontal sweep frequencies of the 
two systems. The number of pixels per line for NTSC and PAL/SECAM are thus 
858 and 864, respectively, and the two formats are called 525/60 and 625/50 signals. 
Taking into account the samples during horizontal and vertical retraces, the active 
pixels for the 525- and 625-line systems are 720x480 and 720x576. 
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Fig. 11.2. BT.601 color component formats: YCbCr (a) (4:4:4), (b) (4:2:2), (c) (4:1:1), (d) 
(4:2:0) formats. 

The color components are represented by the YCbCr color coordinate system. 
It uses the same Y coordinate as the YUV system, where U and V are scaled and 
zero-shifted to obtain Cb and Cr respectively as follows: 

C 5 = ( f / / 2 ) + 0 . 5 ; (11.7) 

Cr = (V"/1.6) +0.5 . (11.8) 

In practice, these values are multiplied by 255 so that they can be represented by an 
8-bit integer. For example, the integer YCbCr values are related to the integer RBG 
values (in the range 0 to 255) by 

Y 
Cb 
Cr 

0.257 
0.148 
0.439 

0.504 0.098 
-0.291 0.439 
-0.368 -0.071 

'R' 
G 
B 

+ 
" 16 " 
128 
128 

where R = 255i?iv, B= 255BN and G = 255G 

(11.9) 

N-

Table 11.1. Picture size for the H.263 picture formats. 

Picture Format 

sub-QCIF 
QCIF 
CIF 
4C1F 
16CIF 

Image size for Luminance 
(pixel X lines) 

128 X 96 
176 X 144 
352 X 288 
704 X 576 

1408 X 1152 

Image size for Chrominance 
(pixel X lines) 

64 X 48 
88 X 72 

176 X 144 
352 X 288 
704 X 576 

Because of the limited sensitivity of the human visual system, the chrominance 
components can be decimated. There are four different formats called YCbCr (4:4:4), 
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(4:2:2), (4:1:1), and (4:2:0) formats as shown in Figure 11.2. No decimation of 
chrominance components is performed in the (4:4:4) format and it is intended for 
applications requiring very high resolution. In the (4:2:2) format, the chrominance 
components are decimated by a factor of two horizontally. For four luminance pixels, 
there are two Cb and two Cr pixels, hence the name (4:2:2). In the (4:2:0) format, 
the chrominance components are decimated by a factor of two in the horizontal and 
vertical directions. The (4:1:1) format differs from the (4:2:0) formats in that the 
chrominance signals are decimated by a factor of 4 horizontally. Although the num
ber of chrominance samples is the same, it yields a very asymmetric resolution in 
the horizontal and vertical directions, which is undesirable. Table 11.1 summarized 
some of the digital video formats. 

In additional to spectral and spatial redundancies in digital images, digital videos 
also exhibit considerable redundancy in the temporal domain. This suggests the use 
of motion estimation to predict one video frame from others. This is usually referred 
to as motion compensation/prediction, which is a very efficient method in video cod
ing. They can be combined appropriately with other waveform coding methods to 
form a wide range of coders to meet different complexity/performance tradeoffs. 
One very successful method, called motion compensated hybrid DCT/DPCM cod
ing, is to combine motion compensation/prediction with transform coding. Because 
of its good performance and reasonable implementation complexity, they form the 
basis for most video coding standards. 

11.2 Motion compensation/prediction 

Motion compensation (MC) plays a very important role in video compression espe
cially in motion compensated hybrid DCT/DPCM codecs. MC is an effective method 
in exploiting the temporal correlation of pixels between adjacent video frames aris
ing from motion of objects or camera. The basic idea is to predict a group of pixels 
in a video frame from nearby pixels in previously encoded frames called reference 
frames. A certain motion model is needed to form the predictor and its parameters 
have to be estimated, which is called the motion estimation problem. By entropy 
coding these motion parameters and the quantized prediction residuals, significant 
compression can be achieved. 

Although more sophisticated motion models are available, most video codecs 
employ the simple linear translation model to reduce the arithmetic complexity in 
estimating the motion parameters and to avoid the transmission of too many motion 
parameters. In the linear translation model, objects are assumed to undergo linear 
translation motion. If the object motion is slow in successive video frames, we can 
further assume that the object shape remains unchanged. As a result, we can simply 
compare the current pixels to those in the previous frame, which are linearly shifted 
in the x- and y-dimension by a certain amount relative to the current pixels. The 
displacement that minimizes a certain distortion measure such as the MSB is an 
estimate of the motion vector of the pixels. 
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Fig. 11.3. (a) Motion compensation/prediction (b) Full search motion estimation (c) Half-pel 
motion estimation. 

In order to combine MC with block-based DCT transforin coding, hence the 
name motion compensated hybrid DCT/DPCM coding, motion estimation is usually 
performed on a square block of pixels. This is usually called block matching motion 
estimation and it is illustrated in Figure 11.3. Here, a predictor is searched in a nearby 
searching window of the reference frame (frame n-1 in this case) for the current block 
of pixels at frame n. Since the matching process is computationally very intensive, 
the mean absolute difference (MAD) is commonly employed to avoid the squaring 
operation in computing the MSB. Denote the intensity images of the current and 
reference frames by /(x, y) and /(x, y) , respectively. The motion vector for a block 
with its lower corner at (a, p) computed using the MAD distortion measure is given 
by 
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MV = argminMAD(i, j ) 

N-\ N-1 

MAD(i , j )=X; E Ha + ni,P + n2)-I{a + ni+i,13 + 712+. 
ui—O n2=0 

-P<i,j <P, 
(11.10) 

where (2p + 1) is the x- and ^/-dimensions of the search window as shown in 
Figure 11.3(b). The prediction residual is then e(ni,n2) = I{a + ni,P + 712)-
I(a + ni+MVj;, f3 + n2+MVy), where MV ;̂ and MV^ are respectively the x- and 
y- components of the motion vector. 

Apart from the motion activities in the video, the quality of block-based motion 
estimation also depends on the choice of 1) the size and precision of the search 
window, and 2) the block size used for motion estimation. 

11.2.1 Size and precision of search window 

In principle, the MV can be real-valued. However, because of the high complexity 
of motion estimation and the diminishing return in coding high precision MV, they 
are chosen as integers (full or integer pel motion estimation) or half-integers (half-
pel motion estimation) in most video coders. Integer MVs can lead to considerable 
prediction residuals, which produce annoying artifacts at low bit rate. In an earlier 
standard such as H.261, a loop filter has to be used in order to smooth out unde
sirable artifact in the reconstructed video. More recent standards, such as H.263 and 
MPEG, use half-pel motion estimation for better motion prediction and the loop filter 
is unnecessary. Instead of searching over all the half integers inside the search grid, 
the integer grid is first searched for the best integer MV. The 8 half-pel locations 
around this integer vector are then examined. In so doing, the reference frame has to 
be interpolated, usually using bilinear interpolation, for computing the MAD. This 
is illustrated in Figure 11.3(c). 

Research has shown that very little can be gained if the search grid is smaller 
than a quarter pel [76]. For video conferencing applications, where object motion is 
usually not so severe, a search window of (-15,15) in both dimensions is commonly 
used. In MPEG-1/2 video coding, the reference frames are not necessarily adjacent 
to the frame to be encoded, a larger search window is thus necessary. 

11.2.2 Block size 

For scenes with moderate motion, block-based motion estimation usually performs 
quite well except at object boundaries, where pixels from the background or other 
objects are rather difficult to predict from blocks in the reference frame. The ampli
tude of the residuals will increase and more bits are thus required. This problem is 
less serious when the block size is small say (8x8) . However, more motion vectors 
will be required. Therefore, there is a tradeoff between coding of motion parameters 
and residuals. In video coding standards such as H.261 and MPEG-1/2, a block size 
of (16 X 16), called a macro-block (MB), is employed as a tradeoff between the 
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two components. In H.263, an optional advanced prediction mode is defined to offer 
the flexibility of having one MV for each (8 x 8) luminance block in a MB. The 
four MVs are differentially coded and it is up to the encoder to decide whether one 
MV or 4 MVs are employed for a particular MB (usually based on the number of 
bits generated from these two coding modes). Another method in the advance pre
diction mode for improving the performance of block-based method is overlapped 
block motion compensation (OBMC). The basic idea of OBMC is to predict the pix
els in the current block, not only by the MV of the current block, but also the MV of 
its neighboring blocks. Experimental results show that OBMC lead to better coding 
performance. Interested readers are referred to [219] and [126] for more details. In 
H.264 [125], variable block size motion estimation is employed. Interested readers 
are referred to [125] for additional information. 

To reduce implementation complexity, motion estimation is usually performed 
on the luminance component only. The motion vector so obtained will be appro
priately scaled for carrying out motion compensation for the chrominance compo
nents. If motion compensation is satisfactory, which means that the residual is small 
enough, then the residual will be transformed, quantized and entropy coded. On the 
other hand, if motion compensation fails, the original image blocks will be transform 
coded. 

There are several approaches in reducing the arithmetic complexity of motion 
estimation at the expense of slightly degraded performance. These algorithms reduce 
the number of computations by either reducing the number of locations searched 
[146, 128, 281] or the number of arithmetic operations in each comparison by pixel 
decimation [172]. Other techniques include the hierarchical search [16] and many of 
its variations [283]. 

11.3 [Motion compensated hybrid DCT/DPCJM coding 

Motion-compensated hybrid DPCM/DCT coding is a commonly used and efficient 
compression technique for digital videos. International video coding standards such 
as H.261 [30], H.263 [126], MPEG-I/2 [119, 120] and MPEG-4 [117] are based on 
this scheme. Figure 11.4 shows the block diagram of a motion compensated hybrid 
DCT/DPCM encoder. 

11.3.1 Coding of/-frames 

The first image frame is usually encoded using DCT-based coding, where the image 
frame is segmented into macroblocks of size usually (16 x 16) for motion estimation. 
For color images using the (4:2:0) YCbCr format, each macroblock will contain 4 
(8 X 8) luminance (Y) and two (8 x 8) chrominance blocks, one for Cb and one for 
Cr. Each block will undergo 2D DCT and the DCT coefficients are quantized and 
entropy encoded. Since the picture is coded, and hence decoded, without reference 
to other pictures, it is usually called an /-picture and the coding method is called 
INTRA-frame coding, /-pictures can serve as reference frames for predicting other 
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Fig. 11.4. Block diagram of Motion compensated hybrid DCT/DPCM encoder. Q: quantiza
tion, Q~^: inverse quantization. 

pictures. They also serve as random access point for decoding a group of pictures in 
the MPEG videos and many MPEG-like algorithms for coding image-based repre
sentations. The latter will be discussed in Chapters 12 and 13. 

11.3.2 Coding of P-frames 

To improve coding efficiency, motion compensation is usually applied to subsequent 
video frames using for example the block matching motion estimation algorithm 
described in Section 11.2. As mentioned earlier, motion estimation is usually per
formed at the macroblock level and is based on the Y component. The macroblocks 
are usually coded from left to right, and from top to bottom. For each macroblock, 
if motion estimation is successful (i.e., the prediction residuals are small enough to 
justify the use of the prediction) then a motion vector (MV) is used to specify the 
prediction of the current macroblock from previous reference pictures. The motion 
vector is then differentially encoded, using adjacent motion vectors as predictors, and 
the residuals are entropy coded. This coding mode is usually referred to as "INTER", 
because it involves inter-frame prediction. For chrominance blocks, the motion vec
tor is divided by two in forming the prediction from the chrominance components 
of the previous reference frame. After subtracting the prediction, each of the (8 x 8) 
blocks, i.e., the 4 Y-, Cb-, and Cr- blocks will undergo 2D-DCT. The DCT coef
ficients are then quantized and entropy encoded (usually in a zig-zag order using 
run-length and Huffman codes). The entropy coded MV and transform coefficients, 
and other coding information will be packed in a certain format to produce an output 
bit stream at a variable rate. The number of bits generated depends on the stepsize of 
the quantizer Q (and in more advanced coders, the choice of possible coding modes). 
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For macroblocks associated with uncovered objects in a scene, motion estimation 
might fail since a good match may not be found from previous reference frame. 
In this case, the prediction residuals will become very large and it is preferred to 
encode the blocks inside the macroblock directly using DCT-based coding without 
prediction. This coding mode is usually referred to as "INTRA", as no inter-frame 
prediction is employed. 

After encoding the current macroblock, the quantized coefficients are locally re
constructed through inverse quantization, Q~^, and then inverse transformed and 
motion compensated to obtain the quantized version of the current macroblock. It is 
then saved in the frame store so that it can be used for predicting future video frames 
through motion compensation. 

11.3.3 Rate control 

Since the compressed video is usually transmitted over a constant rate channel (say 
32-, 64-, and 128kbps, etc), a buffer is needed to smooth out the variable output rate 
from the VLC. This buffer is filled at a variable rate from the VLC and is reading out 
at a constant rate equal to the channel rate. When the buffer is being filled faster than 
it is being emptied, buffer overflow occurs. On the other hand, if the buffer is being 
emptied faster than it is being filled, buffer underflow occurs. To avoid buffer over
flow and underflow, a rate-control mechanism is needed to determine the quantiza
tion stepsizes and other necessary action such as frame skipping for proper operation. 
For example, when there is little activity in the input video, motion compensation 
will be very efficient and the transform coefficients are usually of small amplitudes. 
Under this situation, the quantizer stepsize needs to be decreased in order to generate 
more bits to avoid the buffer from underflowing. 

On the other hand, when there are lots of activities in the input video, the quan
tizer stepsize needs to be increased in order to prevent excessive number of bits being 
generated by the VLC from overflowing the buffer. The determination of the various 
control parameters, such as quantizer stepsize and the choice of coding modes, to 
minimize the distortion subject to certain rate constraints is generally referred to 
as the rate control or buffer control problem. Traditional buffer control algorithms 
are usually based on feedback control approach in which the buffer status is used 
to control the quantizer stepsize, and therefore the rate. The maximum size of the 
buffer is usually constrained by the maximum allowable coding delay. For delay 
sensitive applications, rate control is very difficult due to the limited buffer size. For 
more information on various rate control algorithm, see [45, 220,286,246, 310, 154, 
103]. 

Figure 11.5 shows the block diagram of the decoder. The motion vectors, trans
form coefficients, and other information are decoded from the bitstream in order to 
reconstruct the image blocks. 
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11.4 Video coding standards 

Over the last two decades, different video coding standards have been developed 
to address a wide range of applications including video communications, produc
tion, distribution and storage. The two major organizations responsible for the stan
dardization processes are the ITU-T Video Coding Experts Groups (VCEG) and the 
ISO/IEC Moving Picture Experts Group (MPEG). VCEG has traditionally focussed 
on low bitrate video coding applications for communications, while MPEG groups 
are targeting for higher bitrates entertainment and broadcasting applications. The 
ITU-T H.261 recommendation [30] is the first coding standard used, which is based 
on motion compensated hybrid DCT/DPCM coding. 

Motivated by the need for more efficient digital storage of videos and audios 
at the VCR quality, the MPEG-1 standard was developed later, which operates at a 
higher bit of 1.5Mbps. It was soon recognized that MPEG-1 is unable to efficiently 
compress interlace digital videos at broadcast quality. A joint effort between VCEG 
and MPEG is then set up to develop the MPEG/H.262 [120] standard and its main 
purpose is to enable MPEG-1 like functionality for interlaced pictures, primarily 
using the ITU-R BT.601 (formerly CCIR601) 4:2:0 format. The target was to pro
duce TV-quality pictures at data rates of 4-8 Mbps and high quality pictures at 10-15 
Mbps for high definition TV (HDTV) applications. In 1995, H.263 [126], which is a 
more efficient coder based on H.261, was developed to address low bitrate applica
tions over say a public switched telephone network (PSTN). Later standards, such as 
MPEG-4 [117], MPEG-7 and MPEG-21 [203], on the other hand, focus respectively 
on the development of new coding functionalities, new description tools, and a new 
multimedia framework. 

At the same time, the ITU-T group continued with the extension of the H.263 
standard, H.263+ in 1997 and H.263++ in 2000, and it results in a set of op
tions for further improving the compression efficiency of the basic H.263. The 
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newest standard in the family, H.264 (also known as MPEG-4 part 10, Advanced 
Video Coding (AVC)) is a joint effort between ITU-T and ISO/IEC, and the pri
mary focus is to provide efficient compression solution for a wide range of ap
plications. Important features of H.264 include a simplification back-to basics ap
proach, high compression performance, improved network friendliness, and en
hanced error and packet loss resilience tools for real-time applications over error-
prone channels. A brief introduction to these standards will be given below. To 
make our discussion more concise, interested readers are referred to [125, 247, 
90]. Some of their applications to IBR compression will be further elaborated in 
Chapters 12 and 13. 

11.4.1 H.261 

H.26I is an ITU-T recommendation for coding and decoding of the video compo
nent of audiovisual services at rates p x 64 kbits/s over integrated services digital 
network (ISDN), where p is between I to 30. The standard was published in 1990. 
It specifies a set of protocols that every compressed video bit stream has to follow. It 
also specifies a set of operations that every standard compatible decoder must be able 
to perform. Like many international standards introduced later, only the bit stream 
format and capability of the decoder are defined and the actual implementation of 
the encoder is left to the innovations of individual vendors. 

Figure 11.6 is a functional block diagram of the H.261 video codec. It is a mo
tion compensated hybrid DCT/DPCM coder, which employs motion compensated 
inter-picture prediction to explore temporal redundancy and transform coding to re
duce spatial redundancy. The multiplexer combines the compressed data and side 
information to indicate alternative modes of operation in the encoder. A transmis
sion buffer is employed to smooth out the variable bit rate from the source encoder 
for transmission over a fixed rate communicafion channel. 

Picture formats 

Two picture scanning formats are specified: common intermediate format (CIF) and 
quarter-CIF format (QCIF). CIF is a non-interlaced format with 352 pixels per line 
and 288 lines per picture. These values are chosen to facilitate the conversion from 
BT.601 (formerly CCIR601) 625- and 525-lines signals. One only needs to perform a 
picture rate conversion in 625 - line 25 fps PAL/SECAM systems, and a line-number 
conversion in 525-line NTSC systems. QCIF is for lower bit rate applications such 
as videophones and its resolution is one-quarter of CIF, i.e., (176 x 144). A H.320 
terminal compliance decoder must be able to decode QCIF format at a rate of 7.5 
Hz. Supporting CIF coding and decoding is optional. A color picture is represented 
as the YCbCr (4:2:0) format. The Cb and Cr components are subsampled by a factor 
of two in both the horizontal and vertical directions. Their sizes are 176 pixels per 
line and 144 lines per frame for CIF and 88 x 72 for QCIF 



Video Compression Techniques 219 

Flag for INTRA/INTER 

TO VIDEO 
MULTIPLEX 

CODER 

Switching on/off of Itie loop filter 

(a) 

f 

Analog 
Video { 
Signal 1 

CODING CONTROL 

• ' 
SOURCE 
CODHR 

souKct-: 
DKCODHR 

VIDEO 
MUl.TIPI.HX 

CODER 

Videt 

VJDEO 
MUl.Trpl.l-X 

UECOUHR 

Video 

)Coc 

Dec* 

TKANS MISSION 
BUKFER 

er 

RKCFIVING 
BUFFER 

>der 

TRANSMISSION 
CODKR 

TRANSMISSION 
DHCODHR 

1 Digital 
1 Signal 

1 

(b) 

Fig. 11.6. (a) Block diagram of an H.261 source coder, (b) Block diagram of the H.261 video 
codec. 
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H.261 source coder 

From Figure 11.6(a), it can be seen that the main elements of the coder are frame pre
diction, DCT transformation and quantization. Since H.261 is designed for real-time 
communications, it uses only the closest previous frame for inter-frame prediction in 
order to reduce the encoding delay. Image frames are divided into macroblock (MB) 
of size (16 X 16), each consists of 4 (8 x 8) luminance blocks, and two (8 x 8) 
chrominance blocks, one for Cb and one for Cr. 

Frame prediction 

Since only /-pictures and F-pictures are used, frame prediction is done in P-pictures 
using integer-pel forward motion estimation. One vector is used for all four lumi
nance blocks in the MB. The motion vector for both color difference blocks is ob
tained by halving the component value of the MB motion vector and truncating it 
towards zero. Both horizontal and vertical components of these motion vectors are 
integer valued not exceeding a search range of ±15. The MB is then classified as 
intra-type or inter-type, depending on the results of motion estimation and the cod
ing strategies. Their respective inputs to the DCT coder will be the input MBs for 
the INTRA mode or the differential MBs between the current frame and the previ
ous frame for the INTER mode. Not all MBs need to be coded and transmitted. For 
example, at low bit rates, MBs with low activities (and up to three full frames) can 
be skipped. The choices of transmitting or skipping MBs, using intra- or inter-frame 
coding, and the rate control mechanism are not part of the standard. It may vary dy
namically depending on the complexity of the input signal and the output data rate 
constraints. 

To tell the decoder whether a MB will be coded and which coding modes will 
be used, auxiliary information called macroblock type (MTYPE) and coded block 
pattern (CBP) are sent to the decoder. These combinations are Huffman coded. 

In the prediction path, an optional spatial loop filter can be employed to reduce 
the artifacts generated by large prediction error in the reconstructed frame due to 
inaccurate integer-pel motion estimation. The loop filter is a separable 2D filter that 
operates on (8 x 8) blocks. The loop filter is particular useful to the suppression of 
coding artifact at low bit rates, such as 64kbps. 

DCT transformation and quantization 

Like JPEG and many other video coding standards, the non-zero DCT coefficients 
are scanned in a zigzag manner and the (run-level) values of non-zero coefficients 
are Huffman coded. Unlike JPEG, which uses the same set of quantizer stepsizes 
for all blocks, a different quantizer structure is used which allows stepsizes to be 
changed at the MB level to facilitate rate control. The INTRA DC coefficient is 
linearly quantized with a stepsize of 8 and no dead-zone. Within a MB, the same 
quantizer is used for all the coefficients, except the INTRA DC coefficient. There are 
31 quantizers, and each of them is linear but with a central dead-zone around zero to 
reduce coding noise. (Section 9.3). The stepsize is an even integer in the range 2 to 
62. 
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Rate control 

Because ttie coder is operating at a constant output rate, rate control has to be per
formed. Methods for controlling the generation of coded video data include: process
ing prior to the source coder, changing the quantizer stepsize, and block and frame 
skipping. The overall control strategy is not specified in the H.261 standard. In the 
informative part of the H.261 document [30], the quantizer parameter MQUANT is 
updated by the following formula 

stepsize = 2 x INT(buffer-Content/[200 x q]) + 2, (11.11) 

where INT denotes the truncation of the fraction and the bitrate is gx64 kbit/s. 
In the forced updating mode, the INTRA mode will be employed. The update 

pattern is not defined. However, to control the accumulation of error arising from 
mismatch in IDCT implementation for the encoders and decoders, a MB should be 
forcibly updated at least once per every 132 times it is transmitted. The encoder must 
control its output bitstream to comply with the requirements of the Hypothetical 
Reference Decoder defined in the Recommendation. When operating with CIF, the 
number of bits created by coding any single picture must not exceed 256 kbits. When 
operating with QCIF the number of bits created by coding any single picture must 
not exceed 64 kbits. 

11.4.2 H.263 

This recommendation specifies a coded representation that can be used for compress
ing the moving picture component of audio-visual services at low bit-rates, say over 
public switched telephone network (PSTN). The basic configuration of the video 
source coding algorithm is based on ITU-T Recommendation H.261. Four negotiable 
coding options are included for improved performance. 

The five standardized image formats are 16CIF, 4CIF, CIF, QCIF and sub-QCIF 
(SQCIF) (Table 11.1). In addition to CIF and QCIF defined in H.261, a smaller res
olution called the SQCIF format and higher resolutions called 4CIF and 16CIF for
mats are defined in H.263. Each picture is divided into groups of blocks (GOBs). A 
group of blocks (GOB) comprises of kx 16 lines, depending on the picture format (k 
= 1 for sub-QCIF, QCIF and CIF; k = 2 for 4CIF; k = 4 for I6CIF). The number of 
GOBs per picture is 6 for sub-QCIF, 9 for QCIF, and 18 for CIF, 4CIF and I6CIF. 
The GOB numbering is done using the vertical scan of the GOBs, starting with the 
upper GOB (number 0) and ending with the lower GOB. Data for each GOB consists 
of a GOB header (may be empty) followed by data for macroblocks. Data for GOBs 
is transmitted per GOB in increasing GOB number. 

Source coding algorithm 

The H.263 coding algorithm is an extension of H.261, which is also based on hy
brid DPCM/DCT video coding. Both standards use techniques such as DCT, motion 
compensation, variable length coding and scalar quantization and both use the well-
known macroblock structure. Differences between H.263 and H.261 include: 
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• Availability of a number of options. In the original H.263 standard, there are 
four options : PB-frames; Unrestricted motion vectors, Syntax-based arithmetic 
coding; Advanced prediction mode using overlapped block motion compensation 
and 8 pel X 8 pel motion vectors; 

• H.263 has an optional GOB level; 
• H.263 uses different VLC tables at the MB and block levels; 
• In H.263, there is no error detection/correction included like the BCH in H.261; 
• H.263 uses a different form of MB addressing; 
• H.263 does not use the end of block marker. 

The general form of the source coder is similar to that in Figure 11.6(a). However, 
half-pixel precision is used for the motion compensation, as opposed to H.26I where 
full pixel precision and an optional loop-filter are used. In addition to the core H.263 
coding algorithm, four negotiable coding options are included that will be briefly 
described. All these options can be used together or separately. 

Unrestricted motion vector mode 

In this optional mode, motion vectors are allowed to point outside the picture. In 
forming the predictor, the pixels, which lie outside the image, are replaced by the 
pixels at the image boundaries. A significant gain is achieved if there is movement 
across the boundary of the picture, especially for smaller picture formats. Addition
ally, this mode extends the range of the MV so that larger MVs can be used. This is 
especially useful in case of camera movement. 

Syntax-based arithmetic coding mode 

In this optional mode, arithmetic coding is used instead of variable length coding. By 
removing the restriction of fixed integral number of bits for VLC code, higher com
pression ratio can be achieved at the expense of higher encoder/decoder complexity. 

Advanced prediction mode 

In this optional mode, overlapped block motion compensation (OBMC) is used for 
the luminance part of f-pictures in order to reduce the blocking artifact. In OBMC, 
each pixel in an (8 x 8) luminance prediction block is a weighted sum of three 
predicted values computed from three motion vectors - the MV of the current and 
those from two MBs that are closest to the current (8 x 8) block. A MB can also 
use four vectors (8 x 8) instead of one MV for the entire (16 x 16) block and the 
coding mode is decided by the encoder. Due to the increased flexibility in motion 
estimation, this generally gives a considerable improvement. The subjective quality 
is also improved because OBMC results in less blocking artifact. 
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PB-frames mode 

A PB-frame consists of two pictures being coded as one unit. Tiie name PB comes 
from the name of picture types in ITU-T Recommendation H.262 (MPEG-2 video) 
where there are P-pictures and B-pictures. Thus a PB-frame consists of one P-
picture, which is predicted from the previous decoded P-picture, and one fi-picture, 
which is predicted from both the previous decoded P-picture and the encoded P-
picture in the same PB-frame (using baclcward motion prediction). The name B-
picture was chosen because parts of B-pictures may be bidirectionally predicted us
ing motion compensation from the past and future pictures. With this coding option, 
the picture rate can be increased considerably without increasing too much the bit-
rate. The prediction process is illustrated in Figure 11.7. 

Video multiplex arrangement 

Similar to H.261, the video multiplex of H.263 is arranged in a hierarchical structure 
with four layers. From top to bottom the layers are: Picture, Group of Blocks, Mac-
roblock and Block. Due to page limitation, the details are omitted, interested readers 
are referred to [126] for more information. 

The development of H.263 had three phrases. An initial standard was finished 
in 1995. Extensions of H.263, nicknamed H.263-1- and H.263+-I-, were incorporated 
later at 1997 and 1999. The description above is based on the initial standard [126]. 
Some of the preferred modes not mentioned above included: 1) Advanced intra cod
ing (Annex I) where intra-blocks are coded using the block to the left and above as 
predictors, provided that block is also coded in intra-mode. It increases coding effi
ciency for /-pictures. 2) Deblocking filter (Annex J) where an adaptive filter is ap
plied across the boundaries of the decoded (8 x 8) blocks to reduce blocking artifacts. 
3) Improved PB-frame Mode (Annex M) where backward motion compensation, like 
the B-frames in MPEG, is allowed. 

11.4.3 MPEG-1 video coding standard 

As mentioned earlier, the MPEG-1 standard was designed for coding of moving pic
tures and associated audio for digital storage media at up to about 1.5 Mbits/s. The 
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target of MPEG-1 video was to provide near-VHS quality video at about 1.2 Mbits/s 
with VCR-like interactivity, such as fast forward, fast reverse, and random access 
into compressed data at every half-second [198]. The video is assumed to be pro
gressively scanned using the YCrCb (4:2:0) color component format. A source in
termediate format (SIF), which is a quarter the size of the active area in the BT.601 
signal (formerly CCIR601), was defined. 

There are two SIF formats: 360 x 240 pixels at 30 frames/s or 360 x 288 pixels at 
25 frames/s. SIF pictures can be obtained from BT.601 frame using filtering and sub-
sampling. The MPEG-1 video is based on motion compensated hybrid DCT/DPCM 
coding and it bears many similarities with H.261. However, to provide random ac
cess capability and better prediction, a new picture type called the bi-directionally 
predictive-coded frame (S-frame) is employed in additional to intra-coded frames 
(/-frames) and predictive-coded frames (f-frames). A DC-coded frame (D-frame) is 
also defined for quick browsing of the video. Details of the codec will be described 
below. 

Source coder 

As mentioned earlier, each picture is encoded as /-, P-, or Z?-frames. Like H.261, the 
entire image is divided into (16 x 16) macroblocks, each containing four luminance, 
one Cr, and one Cb (8 x 8) blocks. Figure 11.8 shows a typical Group of Picture 
(GOP) structure of MPEG video with arrows indicating the dependencies among 
the video frames, /-frames are coded using DCT-based transform coding without 
reference to other pictures and they provides moderate compression. One important 
function of/-frames is to provide potential random access points into the compressed 
bitstream in order to support features like: fast forward, fast reverse, random search 
and editing to the video, since they can be decoded independently. 

On the other hand, P-frames are predicted by motion compensation using the 
preceding reference frame, which can be a P- or /-frame as shown in Figure 11.9(a). 
The prediction residuals or the original pixels (if motion-compensation fails) are en
coded using transform coding. Like /-frames, P-frames can also serve as prediction 
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Fig. 11.9. (a) Forward motion prediction in P-frames and (b) Bidirectional motion prediction 
in B-frames. 

references for nearby 6-frames and future P-frames. As /- and F-pictures are served 
as reference frames for predicting other pictures, their quantization stepsizes are usu
ally smaller than S-frames to prevent excessive propagation of coding errors. 

Bidirectional pictures, or i?-frames, are predicted using motion compensation/ in
terpolation from preceding and next reference pictures, as shown in Figure 11.9(b). 
For each MB in a fi-frame, two motion vectors can be estimated from the reference 
pictures, one from the preceding and the other from the next reference pictures. Four 
coding methods are possible for each MB in a B-frame: (1) intra coding when mo
tion compensation fails, (2) forward prediction where the predictor is derived from 
the preceding reference picture using forward motion compensation, (3) backward 
prediction where the predictor is derived from the next reference picture using back
ward motion compensation, and (4) bidirectional prediction where the predictor is 
obtained by averaging the predictors from the preceding and next reference pictures. 
In the last case, two motion vectors will be required for encoding the MB. 

The prediction residuals or original pixels (intra) are then transform coded us
ing DCT. Backward prediction is effective in predicting uncovered areas that might 
appear in the future, but not the previous reference pictures. S-frames offer high com
pression ratio due to the use of non-causal prediction. In addition, their quantization 
stepsizes can be increased relative to /- and F-frames to obtain a higher compression 
because the quantization errors in fi-frames do not propagate to other pictures. A 
simplified block diagram of the MPEG-1 encoder is shown in Figure 11.10. 

As we shall see later in Chapters 12 and 13, /-frames also serve as random access 
point for coding Concentric Mosaics, light fields, and other dynamic IBR represen
tations. However, in order not to complicate the decoding, P-pictures are usually not 
employed as reference pictures in coding light fields. 

Since MPEG-1 employs motion compensation with half-pel accuracy, the loop 
filter in H.261 is unnecessary. Another difference between MPEG-1 and H.261 is 
that the default Quantization matrix (Qmatrix) for intra-coded block (Table 11.2) has 
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larger stepsizes for high frequency DCT coefficients because they are less sensitive 
to the human visual system. In contrast, all entries in the default Qmatrix for inter-
coded blocks are all set to 16. To perform rate control, the Qmatrix is scaled by 
multiplying each element by a constant, called MQUANT, with values between 1 
and 31. A higher value of MQUANT increases the quantization stepsize and reduces 
the bits generated by the encoder. To achieve a better compression performance, the 
DC coefficient of an intra-coded block may be predicted from the DCT coefficient 
of its left neighbor. This concept is different from H.261 and was also employed in 
H.263 and MPEG-4. 

Figure 11.11 shows the transmission and display order of the /-, P- and B- frames 
in MPEG-1. It can be seen that the transmission and display order of image frames 
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are different. The next reference frames, say frame number 4 and 7 in Figure 11.11, 
are transmitted before the B-pictures in between to reduce the storage and delay at the 
encoder and decoder. More precisely, since the reference frames are received before 
the B-frames in between, the decoder can start decoding the S-frames once they are 
received. 

Table 11.2. Qmatrix for intracoded blocks. 
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Layer structure 

A MPEG video stream is organized as a hierarchy of layers as shown in Fig
ure 11.12The first layer is the Sequence Layer which defines the overall video se
quence. Context information for the stream, such as the image size and picture rate, 
is contained in this layer. The Constrained Parameters Bitstream (CPB) is designed 
for CD-ROM playback. These settings bound a sequence to no less than CCIR size 
(720 X 576 pixels), 30 fps with a bit rate of about 1.5 Mbps. 

Below the Sequence layer is the Group of Pictures (GOP) Layer. It includes a 
header and a series of one or more pictures intended to allow random access into 
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the sequence. The decoder can always begin decoding at the start of a GOP, without 
referencing the pictures that come before or after. 

The next layer is the Picture Layer, which is the primary coding unit of a video 
sequence containing actual image data. Each picture can be divided into slices which 
contain consecutive macroblocks in raster scan manner. It allows decoding of the 
next slice, when transmission errors are encountered in the current slice. Motion 
compensation in f-and S-frames are performed at macroblock level which is cho
sen to be (16 X 16). A macroblock contains six (8 x 8) subblocks: four luminance 
blocks and two chrominance blocks. As mentioned earlier, the prediction residuals 
or the original pixels (if motion estimation fails) will be encoded by transform cod
ing. The motion vectors and the encoded transform coefficients will be packed in the 
macroblock layer. At the block level, the transform coefficients are zigzag scanned 
and the run-level values of non-zero coefficients are entropy coded and transmitted. 
The end of transmission of each block is indicated by the end-of.-block codeword. 

11.4.4 MPEG-2 video coding standard 

As mentioned earlier, the main purpose of MPEG-2 is to enable MPEG-1 like func
tionality for interlaced pictures, primarily using the ITU-R BT.601 (4:2:0) format. 
The target was to produce TV-quality pictures at data rates of 4-8 Mbps and high 
quality pictures at 10-15 Mbps (HDTV). A wide range of bit rates, applications, 
resolutions, signal qualities and services are also addressed. 

The following are some major differences between MPEG-1 and MPEG-2 videos: 

1. The chroma samples in the (4:2:0) format are located horizontally shifted by 0.5 
pels relative to MPEG-1, H.261, and H.263. 

2. MPEG-2 is able to code interlaced sequences in the 4:2:0 format and allow for 
much higher bit rates. 

3. MPEG-2 allows additional scan patterns for DCT coefficients and motion com
pensation with blocks of size (16 x 8) pels. 

4. MPEG-2 allows 10-bit quantization for the DC coefficient of the DCT. It also 
employs nonlinear quantization and better VLC tables. 

5. It support various modes of scalability: spatial scalability which enables different 
decoders to extract videos of different picture sizes from the same bit stream; 
temporal scalability where a bitstream can be decoded into video sequences of 
different frame rates; SNR scalability where different amplitude resolutions are 
supported from the same bit stream. 

Extending the concept of a constrained parameter set in MPEG-1, MPEG-2 de
fines profiles that describe the tools required for decoding a bit stream and levels that 
describe the parameter ranges for these tools. They constitute subsets of the MPEG-2 
features and parameter ranges. For example, the Main profile supports /-, P-, and B-
frames. The Main profile at Main level (MP@ML) is widely used, especially for TV 
broadcasting. The Multiview profile enables transmission of several video streams 
in parallel to support stereo presentations. This functionality is implemented using 
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temporal scalability, which allows Main profile decoders to decode one of the video 
streams. The coding of Concentric Mosaics, light fields and other image-based rep
resentation is closely related to multiview coding of videos, except that the pixels or 
lines in the pictures have to be randomly accessed during rendering as we shall see 
later in Chapters 12 and 13. 

11.4.5 MPEG-4 standard 

As defined in ISO/IEC 14496, MPEG-4 is designed to address the requirements of a 
new generation of highly interactive multimedia applications over the various types 
of network, which range from digital television, streaming video, to mobile multime
dia, games and so on. Apart from efficient coding of the multimedia objects, such ap
plications also require other content-based functionalities, such as interactivity with 
individual objects, scalability of contents, and a high degree of error resilience. 

The main difference between MPEG-4 from other coding standards is that it 
provides a rich set of tools to support content-based functionalities and object-based 
coding of natural and synthetic audios and videos, and graphics. MPEG-4 consists of 
a number of parts, and the main parts are the systems, audio, and visual. Due to page 
limitation, only the visual parts will be briefly described in this section. Interested 
readers are referred to [117, 314] for more details. 

Since MPEG-4 allows video objects to be coded and manipulated separately, they 
are well-suited to the coding of pop-up light fields (Chapter 14) and other layered 
based image-based representation. In these applications, objects in the image-based 
representation need to be segmented and rendered using different depth information 
in order to reduce rendering artifacts. This calls for efficient tools for coding the 
shape, texture, and depth maps of the representation, which can be handled effec
tively using the framework of the MPEG-4 standard. An example system for light 
fields and the plenoptic videos will be discussed in more details later in Chapters 12 
and 13. 

MPEG-4 video coding standard 

The visual part of MPEG-4 consists of a set of efficient coding tools that enables 
several classes of functionalities. The applications could range from 5 kbit/s (e.g., 
mobile multimedia) up to 1 Gbit/s (e.g., HDTV). The video formats supported in
clude both progressive and interlaced scans, and the resolutions supported cover a 
broad range, typically from sub-QCIF for low bitrate video communications to 'Stu
dio' resolutions at 4k x 4k pixels. 

In order to provide functionalities such as content-based interactivity, MPEG-4 
allows separate decoding and reconstruction of arbitrarily shaped video objects in a 
sequence, probably with certain semantic meaning. Coding and representing Video 
Objects (VOs) rather than video frames enables applications to access, manipulate, 
and interact with the content more flexibly. Consider the "Dance" sequence in Fig
ure 11.13(a), where a lady is dancing in a gymnasium. To avoid rendering artifacts 
and provide efficient rendering in pop-up light fields, we need to segment the scene 
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Fig. 11.13. (a) An image frame of the "Dance" sequence. Segmented VOPs for the (b) 
"Dancer" and (c) "Background" VOs. 
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Fig. 11.14. Hierarchical bitstream structure of MPEG-4 video object coding. 

into different depth layers. For the "Dance" sequence, one possibility is to segment 
the sequence into two objects - the lady and the background. In MPEG-4 terminol
ogy, the sequences of object constitute a Video Object (VO). Each VO can be further 
divided into different Video Object Layers (VOLs). For example, the wall and cur
tain of the room can be further segmented from the background. Generally, a VOL 
can represent different layers of a scalable bit stream or different parts of a VO. A 
time instant of a VOL is called a Video Object Plane (VOP). Figures 1L 13(b) and 
11.13(c) show the VOPs of the "Dancer" and the "Background" VOs segmented 
from the scene. 

The hierarchical bitstream structure of MPEG-4 video object coding is shown in 
Figure 11.14 and the various terminologies are briefly summarized below: 
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• Visual Object Sequence (VS): P^s, the highest syntactic structure of the coded 
visual bitstream, a VS can be considered as a conventional frame-based video to 
be coded. The scene of a VS may contain multiple 2D or 3D natural or synthetic 
objects and their enhancement layers. 

• Video Object (VO): A VO corresponds to a particular object in the scene of video 
with three dimensions (2D plus time). 

• Video Object Layer (VOL): Each VO can be encoded in scalable (multi-layer) or 
non-scalable form (single layer), depending on the application, represented by 
the Video Object Layer (VOL). Hence, the VOL provides support for scalable 
coding. One of the layers is called base layer, which can be decoded indepen
dently. Other layers are called enhancement layers, which can only be decoded 
together with the lower layers. 

• Group Of Video Object Planes (GOV): A GOV consists of a group of successive 
VOPs, similar to the definition of Group Of Picture (GOP) in MPEG-2. GOVs 
can provide the random access points within the bitstream, thereby enabling ran
dom access functionality. 

• Video Object Plane (VOP): A VOP is an instance of VO at a given time. A VOP 
is a rectangular video frame or a part thereof with an arbitrary shape. A VOP 
includes two different types of information, its texture (luminance signal and 
chrominance signal) and its shape (binary shape or gray-scale shape). 

As mentioned earlier, VOP is a rectangular video frame or a part of it, and is de
fined by its texture (luminance and chrominance values) and its shape. Like MPEG-
2, each VOP can be encoded by the motion, texture, and shape coding tools as /-, 
P-, and B-VOPs. Consecutive VOPs can be grouped into a Group Of Video Object 
Planes (GVOP). This is illustrated in Figure 11.15 where there are two 6-VOPs be-
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tween successively referenced VOPs (/- and F-VOPs). At the decoder, different VOs 
are decoded and composed into a scene and displayed. We now describe the coding 
of these VOs. 

Object-based video coding 

The shape of a VOP is described using alpha-maps. The alpha map of a VOP has 
the same resolution as its luminance component and the value at a particular position 
defines the transparency of the image pixel at the same location. Alpha maps can be 
binary or grey-scale valued. Binary alpha-maps of a VOP define pels that belong to 
it, while grey-scale alpha-maps further define the transparency of the image pixels in 
a VOP. The latter is very useful when one object is pasted on another background. 
By making the values of the alpha map gradually decreasing to zero along the VOP 
boundary, a more natural "matting" or "mixing" of the VOs can be achieved. Fur
thermore, excessive artifacts around image boundaries due to imperfect segmentation 
can be greatly reduced. Because of these reasons, alpha maps have also been exten
sively employed in the rendering of image-based representations such as the pop-up 
light fields and plenoptic videos, which will be described later in Chapter 13. 

Once the shape of a VOP is known, we only need to encode the image pixels or 
texture inside the VOP. We now briefly describe the methods for shape and texture 
coding of VOPs. 

Binary shape coding 

The (16 X 16) binary alpha-map of an MB is called a binary alpha block (BAB). The 
rectangular alpha map bounding a VOP is first divided into non-overlapping blocks 
of size (16 X 16). The blocks that do not lie inside the VOP are called transpar
ent. Those completely inside the VOP are called opaque. The blocks containing the 
boundary of the VOP are called boundary or binary alpha block (BAB) and they con
tain both transparent and opaque pels. For nonboundary blocks, the encoder can just 
signal whether the block is part of the VOP or not. For BABs at object boundaries, a 
method for coding binary image called context-based arithmetic coding (CAE) [142, 
211 is employed. 

In this method, pels are coded using arithmetic coding in scan-line order and 
row by row. A template of n pels is used to define the causal context (i.e., the value 
of the pels in the template) for predicting the value of the current pel. Figure 11.16 
shows a template that uses ten pels to define the context for coding the current pel. 
Since the current pel is binary-valued and there are 10 binary pels in the template, we 
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need to store the probabihties of the white or black symbol (because the other can 
be computed easily). There are altogether 1024 different combinations, with each 
corresponding to a combination of the context. By so doing, the arithmetic code can 
adapt efficiently to the spatially-varying statistics of the binary image. 

There are also two different coding modes for boundary binary shape MBs, intra-
CAE and inter-CAE. Intra-CAE is used to code shape MBs of /-VOP independently, 
while inter-CAE makes use of motion prediction from a binary shape mask reference, 
and they are used in P-VOPs and B-VOPs. Because the context in inter-CAE is de
rived from the current encoded as well as the reference pels, improved performance 
over intra-CAE is usually observed in coding highly correlated video sequences. 

Texture coding 

Texture coding in MPEG-4 is similar to hybrid motion/compensated DCT/DPCM 
coding in other video coding standards, except that special object-based tools are 
employed to handle the arbitrary shape VOPs. For transparent MBs, which lie com
pletely inside the VOP, the coding is analogous to conventional video coding. For 
boundary MBs, two methods are available: 

• Padding: The basic idea of padding is to extend the boundary MBs with arbitrar
ily shaped texture data into (16 x 16) MBs so that the traditional block based 
technique can be applied (Figure 11.17). The pels in the transparent region of 
a boundary MB are filled by extrapolating the pels from the opaque region in a 
way that not many high-frequency components are created as a result of padding. 
When a boundary MB is encoded in intra-mode (MB of /-VOP), the pels in the 
transparent region are first filled with the mean value of the texture pixels in the 
opaque region. Low-pass filtering is then applied to the transparent pixels by av
eraging the pels of its four neighbors. For inter-coded boundary MBs, they are 
padded with zero values. 

• Shape-Adaptive DCT (SA-DCT): In SA-DCT as illustrated in Figure 11.17, 
the opaque pels are shifted vertically to form vertical sequences with different 
lengths. ID DCTs with appropriate size are then applied to the opaque pels. Then, 
a similar operation is performed horizontally. SA-DCT also belongs to a part of 
Advanced Video Coding (AVC) and interested readers are referred to [275] for 
more details. 

For P-VOPs and S-VOPs, the reference VOPs are usually padded to a larger 
size and motion estimafion is performed using the current VO to be encoded with 
arbitrary size. If motion estimation fails, the VO will be intra-coded. Otherwise, the 
residuals will be padded to form a MB and inter-coded similar to traditional MPEG 
video coding standards. The block diagram of the overall coder is summarized in 
Figure 11.18. 

In addition to the object-based coding tools, a number of efficient coding tools 
have been incorporated in the texture coding of the standard. Some of the major 
features are briefly summarized below: 
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Transformation: Similar to MPEG-1 and MPEG-2, DCT (Discrete Cosine Trans
form) is used as the major component to encode 2D (8 x 8) blocks of pixels. 
DC Coefficient Prediction: The DC coefficient value of a block after performing 
DCT can be predicted with reference to either the previous block or block above 
the current block. 
AC Coefficients Prediction: MPEG-4 employs AC prediction of DCT coeffi
cients. The first column or row of AC coefficients of the current block is predicted 
by choosing the previous block or the above block as the predictors. 
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• Direct prediction mode: In this prediction mode, the MVs in recently coded P-
VOPs, are appropriate scaled to yield forward and backward MVs for MBs in 
B-VOPs. As a result, much fewer bits are used for coding motion vectors. 

• Selective Scan; MPEG-4 scans the AC coefficients by selecting a better one from 
the alternate vertical scan and alternate horizontal scan when the AC prediction 
is decided. 

• 3D VLC: An improved 3D VLC is used to encode the DCT coefficients, similar 
to H.263. 

• Unrestricted Motion Vectors: A much wider motion vector range up to 2048 
pixels may be applied as in H.263. 

• Four Motion Vectors: Like H.263, four Motion Vectors can be used in a Micro-
Block (MB), one for each block. 

• Sprite: A sprite is similar to a panorama and it efficiently represents the back
ground of a VO throughout the video segment. The original sprite image can 
be transmitted once at the beginning of the transmission. In subsequent encod
ing, only the mapping parameters involved in warping the sprite, instead of the 
background, are transmitted. A very high compression efficiency can thus be 
achieved. 

• Global Motion Compensation: MPEG-4 supports Global Motion Compensation 
(GMC). The main goal is to better represent and encode the global motion of 
a VOP resulting from camera motion, camera zoom, or large moving object. 
GMC coding supports the five transformation modes for the warping process: 
stationary, translational, isotropic, affine, and perspective. This tool is a part of 
Advanced Video Coding (AVC). 

• Quarter-Pixel Motion Compensation: Compared to half-pixel motion compensa
tion, quarter-pixel motion compensation gives better prediction with small syn
tactical and computational overheads. This tool is also a part of Advanced Video 
Coding (AVC). 

Other functionalities and tools 

Apart from the coding tools mentioned above, MPEG-4 also supports many other 
functionalities such as scalability, still texture coding, error resilience, rate control, 
etc. Interested readers are referred to [117] for more details. 
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Compression of Static Image-based Representations 

12.1 The problem of IBR compression 

In this chapter, the compression of image-based representations is discussed. Com
pression is an essential part of any practical IBR system because of the large data 
size of these representations. Unlike traditional image and video compression that 
we have surveyed in Chapters 10 and 11, there are specific requirements in IBR that 
need to be addressed. These requirements and different compression approaches in 
IBR will be explained in Section 12.1.1. The compression of several important static 
image-based representations including Concentric Mosaics and light fields are dis
cussed in this chapter. Compression of dynamic representations including panoramic 
videos and plenoptic videos will be discussed later in Chapter 13. 

12.1.1 IBR requirements 

Image-intensive representations are usually densely sampled higher dimensional sig
nals. The data sizes and dimensions of several image-based representations are sum
marized in Table 9.1. It can be seen that their data sizes are huge, but their samples are 
highly correlated. Direct application of traditional compression algorithms described 
in Chapters 10 and II, however, usually results in sub-optimal performance. Provid
ing random access to the compressed data for real-time rendering is another impor
tant and unique problem of IBR compression. Unlike conventional video coding, 
which supports random access at the picture or group of picture (GOP) level, higher 
dimensional image-based representations such as 3D Concentric Mosaics (CMs) re
quire random access at the line level, whereas the 4D light field and Lumigraph 
require random access at the pixel level. As most existing compression algorithms 
employ entropy coding (such as Huffman or arithmetic coding) for better compres
sion ratio, the symbols after compression are of variable sizes. It is, therefore, very 
time consuming to retrieve and decode a single line or pixel from the compressed 
data if there is no such provision for random access. 

In addition, it is often impossible to decode the complete bit stream of a high 
dimensional representation in main memory for rendering due to its large data 
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sizes. For example, the 3D CMs of the "Lobby" scene (Figure 2.9) require 297 
MB of random access memory (RAM). To overcome this problem, VQ [267, 
268] or just-in-time (JIT) decoding [164, 341] is usually used. Only those lines 
required for rendering are decoded online from the compressed images. Random 
access mechanisms at the "line level"are, therefore, needed to locate and decode 
individual compressed line image. These problems are even more pronounced in 
higher dimensional representations such as the light field and Lumigraph. Consider 
the 4D light field of the Buddha statue [160], which consists of a 32 x 32 array 
of images, each having a resolution of 256 x 256 with 24-bit per pixel. The total 
amount of storage is 192 MB. Decoding the entire light field into the main memory 
is, thus, prohibitive, especially when the resolution gets increasingly higher. Simi
lar problems exist in the transmission of image-based representations. Techniques 
to support selective transmission/reception and a scalability data stream are, thus, of 
paramount importance. A simple comparison of different image-based representa
tions and compression methods in terms of their complexities, compression ratios, 
and ease of random access is shown in Figure 12.1. 

12.1.2 Different compression approaches 

In general, there are two approaches to reduce the data size of image-based represen
tations. The first one is to reduce their dimensionality, often by limiting viewpoints 
or sacrificing some realism. Light fields and CMs are such examples. The second 
approach is more classical, namely, to exploit the high correlation (i.e., redundancy) 
within the representation using waveform coding or other model-based techniques. 
The scene geometry may be used explicitly or implicitly. The second approach can 
further be classified into four broad categories, which are: pixel-based methods, dis
parity compensation/prediction (DCP) methods, model-based/model-aided methods 
and object-based approach. 
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In pixel-based methods, the correlation between adjacent image pixels is ex
ploited using traditional techniques such as VQ and transform coding. Very little 
geometry information, however, is used. In the DCP methods, scene geometry is 
utilized implicidy by exploiting the disparity of image pixels, resulting in better 
compression performance. (Disparity refers to the relative displacement of pixels in 
images taken in adjacent physical locations.) It is somewhat similar to motion of ob
jects in video coding and they have been used in coding stereoscopic and multiview 
images [7, 158, 174, 204, 213, 214, 238, 285, 334]. As an illustration. Figure 12.2 
shows a simplified light field called "Dance" constructed by two horizontally placed 
camera arrays. It can be seen that the positions of the same object in the light field 
images are shifted relative to each other. Since the disparity is related to the object 
depth, as well as the viewing geometries, these methods also implicitly use the scene 
geometry to improve their coding performances. In contrast, model-based/model-
aided approaches [180, 181] recover the geometry of the objects or scene in coding 
the observed images. The models and other information such as prediction resid
uals [180] or view-dependent texture maps [181] are then encoded. It is clear that 
an image-geometry tradeoff also exists in IBR compression. In the object-based ap
proach, the image-based representations are segmented into IBR objects, each with 
its image sequences, depth maps and other relevant information such as shape infor
mation. The main advantages of this approach is that it helps to reduce the rendering 
artifacts and hence the required sampling rate. It can also be viewed as an extension 
of the DCP method to individual IBR objects. 

Pixel-based methods are easy to implement and, in some cases, the random ac
cess problem is usually less complicated. However, their compression performance is 
limited compared with the other approaches. The model-based/model-aided methods 
have the potential to offer higher compression ratios and other functionalities such 
as model deformation. On the other hand, it requires the acquisition of 3D models, 
and the encoding and decoding algorithms are more complicated. In this book, we 
only focus on the compression techniques of image-based representations. Details 
on geometry compression [65] and model acquisition are omitted. 
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We first review techniques for encoding image-based representations of static 
scenes. We start with compression techniques for CMs since its random access prob
lem is the easiest to illustrate. We then deal with the compression of light fields in 
later sections. 

12.2 Compression of Concentric Mosaics (CMs) 

As described in Section 2.1.3, CMs are constructed from images captured using a 
forward-displaced rotating camera. A novel view is reconstructed by retrieving ap
propriate vertical lines from these images. It can be seen from Figure 2.5 that the 
CM has large spatial resolution, and thus it has to be compressed for efficient digital 
storage and transmission. It is natural to apply standard image compression tech
niques like transform coding, vector quantization and wavelet transform to compress 
these images because the images are highly correlated. Most of these techniques are 
based on a pixel-based method or DCP. The main problem is to provide a special 
mechanism to support random access at the line level. 

12.2.1 Random access problem 

As mentioned earlier, entropy coding usually complicates the rendering of the Con
centric Mosaic because the symbols after compression are of variable size. In fact, it 
is very time-consuming to retrieve the slit images if the bit stream does not support 
any mechanism for randomly or efficiently accessing the compressed slit images. In 
the original work on CMs [267], image vector quantization (VQ) with a fixed vector 
size is used to simplify the random access problem. The compression ratio reported 
was 12 : 1. This can be viewed as a pixel-based method where correlation between 
adjacent image pixels are explored. Like the VQ method first proposed by Levoy and 
Hanrahan [160] to overcome the random access problem in light fields compression, 
the fixed size of the VQ index allows quick access to the required pixel data from 
the compressed light field or CMs for rendering. It also makes real-time decoding 
possible because VQ decoding involves only a simple look-up table. A compression 
ratio of 6 : I to 23 : 1 was reported in [160] for light fields at good reconstruction 
quality. However, the compression ratio of simple VQ is rather limited; it will also be 
unable to cope with future generations of image-based representations with extensive 
synthetic, as well as real world scenes. 

Fortunately, since the mosaic images are retrieved column by column to recon
struct a novel view, the access pattern of the Concentric Mosaic, in contrast to the 
light field and Lumigraph, is relatively regular. This considerably simplifies the ran
dom access problem mentioned earlier. In fact, an entire image line instead of in
dividual pixels is retrieved at the same time to reconstruct a novel view. Therefore, 
it becomes feasible to use a set of pointers for indexing the starting locations of 
each line in the compressed data. On the other hand, the storage overhead due to 
the pointers is still at an acceptable level. Moreover, several adjacent lines can be 
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grouped together to further reduce the storage overhead. This opens up new possi
bilities of using more advanced coding techniques for compressing the Concentric 
Mosaic. Of course, it requires more computational power to cope with the increased 
complexities of the decoder. But with proper choice of the coding algorithms and 
the processing power of today's computers, this is a promising and indeed possible 
direction. 

Apart from this practical issue, successive mosaic images CMk 's also exhibit 
significant amounts of redundancy, similar to that of conventional video sequences. 
Therefore, DCP similar to motion compensation techniques can be used to reduce 
such redundancy making the representation more compact. Based on these obser
vations, Shum et al. [268, 269] proposed an MPEG-like compression algorithm for 
CMs, which supports random access at the line level. We shall base our discussion 
on this algorithm and summarize other approaches later at Section 12.2.5. 

12.2.2 Pointers structure 

Let us consider the mosaic image in Figure 12.3. For simplicity, the image is as
sumed to be compressed by some block-based techniques, such as transform coding 
using the discrete cosine transform (DCT) (Section 10.2). The reasons for choos
ing a DCT-based codec are: i) its reasonably good performance at medium to high 
bit-rate, and ii) the availability of efficient software and hardware implementations. 
Other coding schemes such as the wavelet transform can also be used after appropri
ate modifications, as suggested in the following, to achieve fast decoding. In Figure 
12.3, the image is divided into non-overlapping blocks of size 8 x 8 (or 16 x 16 
if MPEG-2 algorithm is used). Here, the blocks are scanned vertically so that pixel 
data of each vertical line are contained in a group of consecutive blocks. In order 
to retrieve the pixel data of line L, the compressed data of blocks kM to {k+l)M-l 
have to be located and decoded. Due to the use of variable length coding mentioned 
earlier, each compressed group of blocks (GOB) is of variable length. Locating the 
required data by searching the headers of the blocks can be very time consuming, 
especially for real-time rendering. To overcome this problem, a set of pointers to the 
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starting locations of the vertical GOB in the compressed data is first determined and 
stored in an array prior to rendering. Alternatively, the pointers can be embedded in 
the compressed bit streams to avoid creating the pointer arrays when new mosaic 
images are loaded into the memory at the expense of slightly lower compression 
ratio. During rendering, the compressed data for the required GOB can be located 
very quickly. Figure 12.4 illustrates how the pointers can be used to locate the re
quired compressed data. In the next section, a coding scheme similar to the MPEG-2 
standard [120] is used to reduce the spatial redundancy of the mosaic images. 

12.2.3 Predicting mosaic images using DCP 

As mentioned earlier, successive mosaic images have a significant amount of spatial 
redundancy. Thus, DCP similar to motion estimation in video coding can be applied 
to exploit this redundancy. In [268, 269], a modified MPEG-2 video codec is used 
to compress the CM. Recall from Sections 11.4.3 and 11.4.4 that in the MPEG-2 
algorithm, the /-pictures are coded using DCT-based coding without reference to 
other image frames. The F-pictures are predicted by motion compensation using 
the nearest encoded P- or /-pictures as references. The prediction residuals or the 
original pixels (if motion-compensation fails) are encoded using transform coding. 
Like /-pictures, P-pictures serve as prediction references for B-pictures and future 
P-pictures. /?-pictures, which offer much higher compression ratio, are coded by 
bi-directional motion estimation and transform coding. By first transmitting and de
coding the reference pictures, it is possible to decode each of the S-pictures in the 
group of pictures (GOP) independently so as to provide efficient access to individual 
pictures. 

If each of the mosaic images is treated as a video frame, then it is possible to 
apply the MPEG-2 algorithm to compress and decompress the Concentric Mosaic. 
Generally, the mosaic images can be encoded in two different representations: mul-
tiperspective panoramas, and image sequences obtained in the normal setup (shown 
in Figure 12.5). The first approach normally leads to faster rendering speed, while 
the latter usually yields higher compression ratio. 
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Multiperspective panoramas 

Multiperspective panoramas are obtained by putting together the lines Li{9) at the 
same horizontal position,;, for successive images captured in the normal setup (see 
Figures 12.5 and 12.8). This is illustrated in Figure 12.6 for the CMs "Lobby" and 
"Kids." Figures 12.7 and 12.8 show how the MPEG-2 algorithm can be used to com
press the mosaic images and its equivalent multiperspective panoramas, respectively. 
The main reason for choosing multiperspective panoramas is their larger spatial re
dundancy between successive panoramas. The correlation between successive mo
saic images, on the other hand, is slightly lower because the rays are further apart 
when the radius of the circles decreases (see lines / / j , Is^ , and //^ in Figure 12.7). 

For an /-picture, the pointer structure mentioned earlier can be used to access the 
compressed data of a group of blocks (GOB). These pointers can either be embedded 
in the compressed bit stream or created during decoding. If 5-pictures are added to 
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achieve a higher compression ratio, the pointer structure would only allow us to 
efficiently decode the motion vectors and the prediction residuals of that GOB. Their 
predictors in the reference /-pictures still need to be retrieved. However, since the 
predictors in the /-pictures are in general located in different GOBs, these blocks in 
the /-pictures also need to be decoded. The situation is even worse if P-pictures are 
involved because they are in turns predicted from previous P-pictures. One solution 
to this problem is to decode all the /- and F-pictures and save them in memory for 
later use, or implement a cache to store previously decoded pictures, at the expense 
of higher memory requirement and complexity. In other words, there is a tradeoff 
between rendering speed and the amount of compression that can be achieved. 

Fortunately, it was found in [269] that using the multiperspective panoramas, the 
number of /- and P-pictures required can be significantly reduced. Out of the 320 
multiperspective panoramas of the Concentric Mosaic "Lobby," only two /-pictures 
at the beginning and the end, and 7 P-pictures in between are needed. Therefore, 
there are approximately 39 B-pictures between two P- or /-pictures. If the P-pictures 
are decoded when the Concentric Mosaic is loaded into the memory, then the com
plicated interdependence of the P-pictures mentioned above can be avoided. Conse
quently, faster rendering speed can be achieved. Alternatively, the P-pictures can be 
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replaced with /-pictures to reduce the loading time, at the expense of a slightly lower 
compression ratio. 

Another reason for the increased separation between the P- and /-pictures is that 
global motion estimation can be applied to the whole GOB in the multiperspec
tive panoramas, before carrying out the motion estimation for the macroblocks in 
the MPEG-2 algorithm. This reduces the search range in the motion estimation of 
the MPEG-2 algorithm and hence the data required to represent the motion vec
tors. More precisely, the block size used in the global motion estimation is 16 x 
208, which consists of a vertical stripe as shown in Figure 12.9. Because of the dif
ferences in field of view of the multiperspective panoramas, the upper and lower 
boundaries of a given multiperspective panorama do not, in general, appear in its 
previous neighbour. Figure 12.9(a). Therefore, only the middle portion is used to es
timate the global displacement (motion) vectors for a group of blocks in "forward 
prediction," Figure 12.9(a). "Backward prediction" in the multiperspective panora
mas is done similarly as shown in Figure 12.9(b). The global motion vectors are used 
as initial positions for carrying out the motion estimation of the macroblocks in the 
MPEG-2 algorithm. The differential motion vectors of the macroblocks in the verti
cal slice are coded using the MPEG-2 algorithm while the global motion vectors are 
included by modifying the GOB headers of the standard. 

Normal setup sequence 

The normal setup sequence as shown in Figure 12.5 can be viewed as a video se
quence with a constant camera panning motion. As a result, there is more spatial 
correlation within the normal setup sequence than that of using multiperspective 
panoramas. Consequently, the compression ratio when using the normal setup se
quence is also higher. The separation of the /-pictures, on the other hand, is much 
smaller than the former. This is due to the significant amount of uncovered scenes 
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occurring at each image frame, which cannot be predicted by bi-directional motion 
estimation when the /-pictures are set further apart. Therefore, it would require a 
significant amount of storage to decode all the /-pictures and load them into memory 
for fast rendering. Instead, the required GOBs together with their predictors in the 
reference frames are selectively decoded. Therefore, the rendering speed is slightly 
slower than using multiperspective panoramas. For efficient rendering, F-pictures are 
usually not employed in the algorithm, due to their inter-dependencies. 

Table 12.1. Coding results of the CMs using multiperspective panoramas (Y component). 

"Lobby" (Q = 
GOP structure 

I only 
I5B 

I lOB 
I20B 
I39B 

C.R. 
24.28 
43.22 
46.50 
45.03 
42.01 

16) "Kids 
PSNR (dB) GOP structure 

33.67 
34.52 
34.53 
34.54 
34.50 

I only 
158 

I lOB 
I20B 
I43B 

"(Q = 
C.R. 
22.05 
33.67 
35.64 
35.28 
33.14 

24) 
PSNR (dB) 

28.87 
29.94 
30.02 
30.07 
30.06 

C.R. stands for compression ratio. 

Table 12.2. Coding results of the CMs using normal setup sequence (Y component). 

GOP 
structure 

I only 
I IB 
I2B 
I3B 
I4B 
I5B 
I6B 
I7B 
I8B 
I9B 

"Lobby" (Q = 16) "Kids" (Q = 24) 
Q=16 Q = 24 Q = 24 Q = 32 

; C.R. PSNR C.R. PSNR C.R. PSNR C.R. PSNR 
(dB) (dB) (dB) (dB) 

30.49 35.15 39.76 33.15 29.48 31.07 36.19 29.67 
47.04 35.59 63.82 33.60 43.73 31.66 54.97 30.22 
56.90 35.72 79.25 33.74 50.70 31.79 64.94 30.33 
60.89 35.70 86.88 33.69 54.22 31.84 70.46 30.36 
63.92 35.74 92.80 33.74 55.61 31.83 73.09 30.34 
64.83 35.73 95.38 33.73 55.39 31.80 73.33 30.30 
65.28 35.72 97.08 33.71 54.24 31.77 72.22 30.25 
64.68 35.69 96.98 33.65 52.60 31.74 70.40 30.20 
63.63 35.66 96.11 33.61 50.91 31.71 68.36 30.16 
62.14 35.62 94.42 33.55 49.03 31.69 65.93 30.13 

C.R. stands for compression ratio. 

12.2.4 Compression results 

We now illustrate the performance of the coding algorithms using the CMs "Lobby" 
and "Kids" described in Section 12.2.3 as examples. For simplicity, no rate control 
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Fig. 12.10. Rendered views of the Concentric Mosaic "Lobby" after decompression: (Left) 
using the normal setup sequence (compression ratio: 65.28; mean PSNR: 35.72 dB); (Right) 
using multiperspective panoramas (compression ratio: 42.01; mean PSNR: 34.50 dB) 

algorithm is applied and a uniform quantization scale factor (Q) is used for all the I-
and S-pictures. 

For the CMs "Lobby", the multiperspective panoramas are represented as 320 
24-bit true color panoramas, each having a resolution of 1350 x 240. Table 12.1 
shows the compression results of the multiperspective panoramas. It can be seen 
that the coding performance is reasonably good even when the separation between 
successive /-pictures is increased to 39. Since there are only 9 reference /-pictures, 
they can be decoded and stored in the main memory for fast decoding of all the 
320 image frames. The memory requirement for these reference /-pictures is only 
8.34 MB (1350 x 240 x 3 x 9 Bytes). It can also be seen that the use of global 
motion compensation considerably outperforms direct application of the MPEG-2 
algorithm. A Peak Signal to Noise Ratio (PSNR) of 34.50 dB can be achieved at a 
compression ratio of 42.01 (or 0.571 bpp). On the other hand, the compression ratio 
for the Concentric Mosaic "Kids" is much lower than that of "Lobby" at a given 
PSNR. It is because the former contains significantly more details than the later. 

The normal setup sequence of the CMs "Lobby" consists of 1350 (320 x 240) 
images with 24-bit true color. Table 12.2 shows its compression results with Q equal 
to 16 and 24. If only /-pictures are used, a Peak Signal to Noise Ratio (PSNR) of 
35.15 dB can be achieved at a compression ratio of 30.49 (or 0.787 bpp). The perfor
mances of using different combinations of /- and B-pictures are also given. It can be 
seen that using more B-pictures improves the coding performance when the separa
tion between successive /-pictures is less than 6 for Q equal to 16 and 24. When the 
compression ratio is increased to 65.28 (or 0.368 bpp), using 6 /^-pictures between 
two consecutive /-pictures improves the PSNR to 35.72 dB. This shows that there is 
a significant amount of inter-frame redundancy in the normal setup sequence. Also 
shown in Table 12.2 are the coding results for the Concentric Mosaic "Kids" with Q 
equal to 24 and 32. As a comparison, a compression ratio of about 20 can be achieved 
using vector quantizafion and entropy coding [267J. Therefore, the MPEG-2 based 
compression algorithms can provide much higher compression ratios than simple 
vector quantization while preserving the random access capability. 

Next, the rendering speed of the compression algorithms are briefly compared. 
In the experiments, there are respectively 39 and 6 /^-pictures between successive 
/-pictures in coding the multiperspective panoramas and the normal setup sequence. 
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Table 12.3. Rendering speed comparison on Pentium II 300 MHz PC (frames per second). 

Algorithm 352 x 168 800 x 372 
VQ [267] 

Multiperspective Panorama (I 39B) 
Normal Setup Sequence (1 6B) 

40.00 
41.67 
27.03 

10.53 
10.87 
9.62 

One thousand novel views at the center of the Concentric circles are continuously 
rendered with an angular spacing of 0.006 radians. The averaged rendering speed of 
the three algorithms on a Pentium II 300 MHz PC with 64 MB memory are shown In 
Table 12.3. It can be seen that the rendering speed of using multiperspective panora
mas is comparable to that of using VQ. The algorithm using the normal setup se
quence is about 35% slower than the formers but it can still achieve a rendering 
speed of 27 frames per second at a resolution of 352 x 168. Figure 12.10 shows the 
rendered views of the Concentric Mosaic "Lobby" obtained respectively from the 
compressed normal setup sequence and the multiperspective panoramas. They show 
good quality reconstruction with a compression ratio of 65 and 42, respectively. 

12.2.5 Other approaches 

A similar MPEG-like algorithm, called the reference block coder (RBC), was also 
proposed in [340]. The mosaic images are classified as anchor (A) and predicted (P) 
frames. A-frames are independently encoded in a similar manner as the /-pictures in 
MPEG-2, while the P-frames are encoded using DCP with reference to the surround
ing A-frames. The /"-frame in RBC differs from the F-pictures of MPEG-2 in that it 
refers only to the A-frames to facilitate random access. In addition, a two-level hier
archical table is embedded in RBC for indexed bit stream access. The compression 
ratio is slightly better than direct application of MPEG-2 after taking into account 
the regular panning nature of the image sequence. An interesting feature of RBC is 
the extensive use of data caches to reuse previously decoded macroblocks, which 
improves rendering speed. The rendering system is able to run smoothly on a Pen
tium II 300 desktop PC. The RBC was also the first algorithm that enabled the online 
streaming of CMs [342]. 

The application of wavelet transform to the compression of CMs was studied 
in [175, 328, 329]. Potential advantages of wavelet transform are its higher coding 
performance and ability to provide resolution and quality scalabilities. Direct 3D 
wavelet transform coding [151], however, yields a performance only comparable to 
that of MPEG-2. By using a smart rebinning approach to align successive images 
in a CM, the wavelet-based approach produces very encouraging results, which out
performs the MPEG-2 based algorithm by 3.7 dB on average. The success of the 
rebinning method is due to its ability to exploit the redundancy of multiple mosaic 
images arising from the disparity of image pixels. 

The rendering operation is, however, complicated by the long filter support of the 
wavelet transform (compared with block transforms). In fact, decoding a given pixel 
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involves decoding other adjacent pixels. To overcome this problem, the progressive 
inverse wavelet synthesis (PIWS) method [328] only performs the necessary inverse 
calculations to reconstruct the coefficient used in the current view. With extensive 
cache usage, PIWS was able to perform real-time rendering. A multiresolution sub-
band coder using nonlinear filter bank [209] has also been proposed to overcome the 
long filter support of wavelet transform for progressive transmission. 

12.3 Compression of light JReld 

12.3.1 Conventional techniques 

The light field and Lumigraph sample the plenoptic function in a 2D plane and gen
erate a 2D array of images of the scene. Since adjacent light field images appear 
to be shifted relative to each other, there is considerably redundancy in the 4D data 
set. In additional to conventional pixel- and disparity-based methods, a number of 
model-based/model-aided algorithms that explicitly explore the scene geometry were 
proposed. We now brieily describe the various methods for light field compression 
under the first three categories mentioned previously. The object-based approach will 
be separately treated in Section 12.3.2. 

Pixel-based methods 

Earlier approaches on light field or Lumigraph compression were mostly based on 
conventional pixel-based methods. The original work of Levoy and Hanrahan [160] 
used VQ to provide random access in light fields; DCT coding [196] and wavelet cod
ing [150,230] were subsequently used. More recently, DC? and model-based/model-
aided methods were proposed to achieve a higher compression ratio for storage and 
transmission. 

DCP methods 

Disparity compensated prediction, as with CMs, can be applied to predict one light 
field image from the others. This is illustrated in Figure 12.11, where the array of 
light field images is divided into /- and P-pictures. The P-pictures can be predicted 
by disparity compensation from the nearest encoded /-pictures, which are evenly 
distributed. An example is the V-coder described in [177,179], which is based on the 
H.263 video coding algorithm [126]. Like conventional video coders, the P-images 
are divided into 16 x 16 blocks. Eight different coding modes are incorporated to 
efficiently exploit the characteristic of the light field. Mode selection was determined 
using a rate-constrained approach and was solved using the method of Lagrange 
multipliers. Prior to rendering, the /-images are decoded and kept in local memory to 
provide instantaneous access to a low-resolution version of the light field. However, 
rendering speed may be adversely affected if the compressed light field is decoded 
online. This is because random access of light rays (pixel) is unavailable. 



2 5 0 Image-Based Rendering 

C ^ \ li 

I-PiLiarc P-Ptauif PPutuft PPiLniri I !-P«tu 

Fig. 12.11. DCP in light field compression. 
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P'ig. 12.12. Prediction order of an 8 x 8 light field in [298]. (a) Each layer I image is predicted 
fi'om a nearest layer 0 or layer 1 image, (b) Each layer 2 image is predicted from two nearest 
layer 1 images. Only a quarter of the light field is shown. 

Recently, Tong and Gray [298] combined disparity compensation prediction 
(DCP) and VQ (HDCP) and proposed a hierarchical light field coder as shown in 
Figure 12.12. The 2D array of light field images is divided into layers, with the low
est layer being vector quantized without any prediction. Images in higher layers are 
predicted from images in the lower layers using DCP. The prediction residuals are 
again vector quantized and different coding modes are incorporated to improve cod
ing efficiency. In Figure 12.12, each layer 1 image is predicted from a nearest layer 
0 or layer 1 image, whereas each layer 2 image is predicted from two nearest layer 
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Fig. 12.13. The three levels of light field data structure proposed in [298]. 

1 images. To facilitate random access, the residuals and disparities are not entropy 
encoded. Moreover, the predictive coded images are divided into regions, and each is 
associated with a 4-Byte offset to support random access. Significantly better com
pression rates were obtained for the "Buddha," "Dragon," and "Lion" light fields, 
compared with using simple tree-structure VQ (TSVQ) (Appendix 10.5), due to the 
use of DCP. Figure 12.13 shows the three levels of light field data structures. The 
highest level contains three fields: the type, frame index, and an address pointer for 
each light field image or frame. The type field indicates whether the frame is coded 
as /-, P- or B-frames. The frame index is the {u, v) coordinate of the light field while 
the address pointer locates the corresponding compressed data. At the frame level, 
the compressed data are either arranged as fixed-length VQ indices for an /-frame 
or disparity and residual data for P- and B-frames coded with different modes. For 
example, the first macroblock in Figure 12.13 is coded with mode 00, which has 
no disparity and residual. Other macroblocks may be coded with residual only (01), 
disparity only (10) and both (11). They are referenced using the address/offset field. 
Finally, the compressed data are contained in the next level, the region level. In [298], 
one codebook is used for each layer. 

The D-coder, which was also proposed in [178, 179], relies on disparity com
pensation of light field images. The four corner images in the image array are first 
encoded as /-images. Their disparity maps are then estimated and Huffman coded. 
From the encoded corner images and their disparity maps, the center image, and then 
the images midway between any two corner images, are predicted. The residuals, if 
any, are DCT coded. These nine encoded images are then used to divide the im
age array into four quadrants, each of which is recursively encoded using a similar 
method. Due to the hierarchical nature of the D-coder, the decoding of the image pix
els is very time consuming. This slows down the rendering speed if the compressed 
data is decoded online. 

Zhang and Li [341] have also extended the reference block coding to the en
coding of Lumigraph using multiple reference frame (MRF) prediction. Disparity 
compensation is applied to the 2D light field array instead of the one-dimensional 
(ID) image sequence in CMs. As with /-images in [179, 298], certain images in the 
light field array are chosen as the anchor frames (A frames), which serve as refer-
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ences for predicting the remaining F-images. A two-level index table is incorporated 
into the bit stream for quick access to individual picture and macroblocks. Like CMs, 
this reduces the compression ratio. At a compression ratio of 100 : 1, the overhead 
incurred is 10%. The overhead increases to 30% when the compression ratio reaches 
160 : 1. A caching scheme is also incorporated to speedup the rendering. 

Model-based/model-aided methods 

It has been shown that 3D scene geometry can improve coding efficiency and render
ing quality considerably [42, 323]. The model-based coding (also known as texture-
based coding) proposed in [181] makes use of the scene geometry to convert the 
images from a spherical light field to view-dependent texture maps. These maps ex
hibit greater inter-map correlation than the original images and are more effectively 
encoded using a modified set partitioning in hierarchical trees (SPIHTs) 4D wavelet 
codec [250]. On the other hand, model-aided predictive coding [180] makes use of 
geometry information to morph and predict new views from already encoded images. 
The prediction residuals are encoded using DCT-based coding. Like the hierarchical 
light field coder in [298], a decimated version of the spherical light field array are 
encoded as intra- or /-pictures, and they serve as references for predicting images at 
the next layer. By arranging the images in a hierarchical manner, a multiresolution 
representation of the image data is obtained which facilitates progressive rendering 
and decoding. Both algorithms encode the geometry of the objects using the embed
ded mesh coding (EMC) in which the vertex coordinates and mesh connectivity are 
jointly encoded to provide better scalability and improved performance. Experimen
tal results showed that the model-aided approach is more robust to variations of the 
geometric models. Readers are referred to [182] for more details. 

12.3.2 Object-based light field compression 

A difficult problem of rendering light fields is the excessive artifacts due to depth 
variations. If the scene is free of occlusions, then the concept of plenoptic sampling 
[33] (Part II) can be applied to determine the sampling rate in the camera plane. 
Unfortunately, because of depth discontinuities around object boundaries, the sam
pling rate is usually insufficient around object boundaries and significant rendering 
artifacts due to occlusion are observed. Moreover, appropriate mean depths for ob
jects have to be determined to avoid blurring within the objects and ghosting at the 
boundaries. Thus, depth segmentation or some kind of depth information is neces
sary in order to improve the rendering quality. Motivated by Gortler et a/.'s work 
on Lumigraph [91] and the layered depth images of Shade [264], [80] proposed to 
augment each image pixel in a static and dynamic light field with a depth value. Due 
to the limited amount of information that we can gather from images and videos, a 
very high-resolution depth map is usually unavailable. Besides, the data rate of these 
detailed depth maps sequences is very high. Fortunately, plenoptic sampling tells us 
that dense sampling of image-based representation will tolerate this variation within 
the segments by interpolating the plenoptic function. In other words, it is highly de
sirable to focus on objects with large depth discontinuities. By properly segmenting 
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the light field images into objects at different depths, the rendering quality in a large 
environment can be considerably improved using mean depth values [270]. 

These observations motivated Shum et al. [270] to propose a light field repre
sentation called pop-up light fields. Later, Gan et al. [79] developed an object-based 
approach to simplified dynamic light fields called the plenoptic videos. In pop-up 
light fields, to be described in Chapter 14, and the object-based plenoptic videos, the 
light field images are segmented into IBR objects, each with its image sequences, 
depth maps and other relevant information such as shape information. Moreover, 
this allows other content-based functionalities such as scalability of contents, er
ror resilience, and interactivity with individual IBR objects to be incorporated sim
ilar to the MPEG-4 standard. For instance, IBR objects can be processed, rendered 
and transmitted separately to meet different requirements of the channel, process
ing speed, and presentation styles. In wireless transmission, different IBR objects 
might be given different number of bits (and different amounts of channel coding) 
and hence different reconstruction qualities (error resilience). They might also be 
transmitted at different frame rates to achieve object scalability. In this chapter, we 
shall describe how these video objects are segmented, rendered, and inpainted. The 
compression aspects of the object-based plenoptic videos are described later in Sec
tion 13.4. 

Using the object-based representation, it is relatively simple to detect possible 
occlusions during rendering and estimate the rendered pixels. In the framework of 
plenoptic sampling, the operation can be viewed as a spatially varying reconstruc
tion filter in the frequency domain. Basically, our rendering algorithm explores and 
observes the physical model and constraints of image formation so that the rendering 
quality can be improved at lower sampling rate. In [81], a portable plenoptic video 
system, which consists of two linear arrays each carrying 6 video cameras, for large 
and dynamic environment scenes was constructed to demonstrate the usefulness of 
the object-based approach. 

Here, we shall review some important aspects of the object-based approach pro
posed in [81]. In Section 12.3.3, an interpretation of the object-based approach in 
the context of plenoptic sampling is given. Then, the object tracking, rendering and 
matting algorithms will be described respectively in Sections 12.3.4 and 12.3.5. 

12.3.3 Sampling and reconstruction of light fields 

In Part II, we described the concept of plenoptic sampling [33], where the number 
of pictures required to render a given scene or the sampling density was studied. 
Here, we shall further consider its applications and interpretation in the context of 
object-based representation of IBR. For the standard two-plane ray space parame
terization, the camera plane and the focal plane are respectively parameterized by 
the parameters (,s,t) and {u,v). Each ray in the parameterization is uniquely de
termined by the quadruple {u,v,s,t). For fixed values of s and t, we obtain an 
image taken at a location indexed by {u,v). Interested readers are referred to [91, 
160] for more details. 
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Fig. 12.14. Left to right: (a) Mean depth reconstruction filter, (b) Spatially varying reconstruc
tion filter with local mean depth. 

Assuming a pinhole camera model, the pixel value observed is the convolution of 
the plenoptic function l(v, t) with the point spread function. If we know the spectral 
support of the Fourier transform of l{v,t) : L{Qv, Qi), then it is possible to apply 
the sampling theorem to predict the required sampling density. Assuming that there 
are no occlusions or depth discontinuities, it was found that the spectral support of 
L{f2y, Qt) is dependent on the depth of the objects as shown in Figure 12.14 (a) 
for a 2D light field. From the figure, it can be seen that objects at a certain depth z 
will appear as a line in the frequency domain. Thus, if the maximum and minimum 
depth values are known, a reconstruction filter using the mean depth of the scene 
can be used to reconstruct the light field from its samples and it also defines the 
sampling density for a given sampling geometry. This result allows us to determine 
the sampling rate for proper reconstruction of the light field and to avoid undesirable 
aliasing effects. 

Since the Fourier transform of a light field is a global frequency description of the 
entire light field, it only gives us the frequency components or spectrum in the entire 
light field, but not its local behavior. For scenes with large depth variations, objects 
with different depth values will contribute to the entire spectrum. If we window the 
light field at a particular location (u,?;, s , t ) , and compute its Fourier transform at 
this location, it will give us its local frequency content. For regions with less depth 
variations, we would expect a spectrum similar to that shown in Figure 12.14 (b) with 
an orientation predicted approximately by plenoptic sampling. A reconstruction fil
ter tailored for this particular mean depth can be used to reconstruct the light field 
locally. Therefore, the reconstruction filter should be spatially varying and it should 
depend on the local depth image of the light field. Ideal reconstruction filters with 
support shown in Figure 12.14 (a) usually have long filter length and they will cause 
ringing artifacts in reconstruction. The spatially varying reconstruction allows sim
pler reconstruction filter such as bilinear interpolation to be used, if the local mean 
depth of the region is known. 

Although the quality of rendering will be improved with the amount of depth 
information or geometric information we have, very accurate depth values are gener
ally not required inside regions with limited depth variations according to plenoptic 
sampling. At object boundaries, image pixels cannot be interpolated simply because 
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of a discontinuity generated by the occlusion. Fortunately, the light field looks like a 
piecewise continuous 2D signal with pixels from foreground covering those from the 
background. If the objects are nearly coplanar and if they are at a large distance from 
the cameras, the magnitude of the discontinuity will be smaller and fewer artifacts 
will be generated. Therefore, the previous analysis using locally adaptive reconstruc
tion filter and plenoptic sampling can be applied to individual objects except around 
the boundaries. 

In sampling theorem, the band-limited signal is reconstructed by interpolation of 
the data samples. On the other hand, in recovering piecewise continuous signals, the 
discontinuity has to be identified and interpolation/extrapolation are performed inde
pendently on each side of the discontinuity in order to avoid excessive artifacts. In 
other words, by exploring the structure of the light field or the physical geometry, it is 
possible to reduce the sampling rate in order to get an acceptable reconstruction, pro
vided that depth information, especially the location of the depth discontinuity, can 
be identified. Therefore, methods for detecting and handling occlusion are important 
issues. Rendering algorithms using this concept and the pixel-depth representation 
that we have mentioned earlier will be described in the next section. It is shown that 
the rendering quality can be significantly improved with additional depth informa
tion. 

12.3.4 Tracking of IBR objects 

As mentioned earlier, objects at large depth differences are segmented into layers 
and are compressed and rendered separately. This helps to avoid the artifacts at object 
boundaries due to depth discontinuities. In the method in [81], an initial segmentation 
of the objects is first obtained using a semi-automatic approach. Tracking techniques 
are then employed to segment the objects at other video streams and subsequent time 
instants. The method in [81] is based on the level-set method or geometric partial 
differential equations (PDE). The use of PDE and curvature-driven flows in tracking, 
segmentation and image analysis has received great attention over the last few years 
[263,224,252,188,221]. The basic idea is to deform a given curve, surface, or image 
according to the PDE, and arrive at the desired result as the steady state solution of 
this PDE. The problem can also be viewed as minimizing a certain energy function: 

Ui{C)= f F{C,x)dx (I2.I) 

as a function of a curve or surface C. The subscript indicates that the energy is com
puted from the given images /. Usually, F{C, x) is designed to measure the deviation 
of the desired curve from C at point x. To minimize the functional in (12.1), the vari
ational approach can be employed to convert it to a PDE A necessary condition for 
C to be a local minimum of the functional is Uj{C{t)) = 0. A general numerical 
approach is to start with an initial curve Co and let it evolve over a fictitious time 
variable t according to a PDE, which depends on the derivative U'j{C{t)) as follows: 
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dC{t) 
U'i{C{t)). (12.2) 

dt 
However, conventionally finite difference methods are unsuitable to solve (12.2), 
because the PDE might be singular at certain points. A major breakthrough in solving 
(12.2) is due to Osher and Sethian [222], and the method is commonly referred to 
as the level-set method. The basic idea behind the level-set method is to represent 
a curve or surface in "implicit form" such as the zero level sets or isophone of a 
higher dimensional function. More formally, the time evolution of curves C{x, t) is 
represented as the level set of an embedding function (j){x, t): 

Lc{x,t) •- {{x,t) e R^ : <j){x,t) = c} (12.3) 

where c is a given real constant. (12.2) can be rewritten as a PDE of (t>{x, t) as fol
lows: 

^=p\m\ (12.4) 

where /3 is the velocity of the flow in the normal direction and it is derived from 
above. The initial curve Co is associated with the level set with c = 0, i.e., zero level 
set, and its time evolution is computed numerically by solving the following equation 
for (p{t) , after discretizing at a sufficiently small time interval or step At: 

(j>{{n + l)At) = (j}{nAt) + At • G{(t>, x) (12.5) 

where G{4', x) is an appropriate approximation of the right hand side of (12.4). The 
desired solution is obtained when the PDE converges at sufficiently large value of n. 
For the object tracking problem in [81], the following energy function for curve C is 
defined: 

Ui{C) =a Cinsideix,y)dxdy - fj / Coutside{x,y)dxdy + XLength(C) 

(12.6) 
where CinsideX'-^iV) and Coutside{x,y) are two functions designed respectively 
to control the expansion and contraction of the curve C at location {x,y), and 
Length{C) measures the length of the curve. If we assume that the pixel values 
are independent and Gaussian distributed with means Cj„ and Cout respectively in
side and outside the curve, then it can be shown that the PDE so obtained can be 
written as: 

del) 

~dt 
= Oi{U(^^y) - Cinf - /3(W(3;,,y) - Coutf + A • div{-r—-) ( 1 2 . 7 ) 

(x,y) I '^l 

where a, fj and 7 are positive parameters, U(^x,y) is the value of pixel {x,y), Cin 
denotes the driving force inside the curve C, and Coui represents the driving force 
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Fig. 12.15. (a) Tracking result of global-based method, (b)-(d) Tracking results of our method. 

outside the curve C. The third term, which is derived from Length{C), makes the 
curve smooth and continuous. 

There are two different methods for determining Cm and Cout- global-based and 
local-based methods. The global-based method which is adopted in [38] utilizes all 
the pixels to drive the curve C, where Cm denotes the mean of all pixels inside the 
curve C, and Co^t is the mean of all pixels outside the curve C. There are many 
advantages associated with a global-based method, e.g., fast evolution speed and 
insensitive to noise. However, some fine features along the boundary of the objects 
to be tracked might be lost. Figure 12.15(a) shows an example tracking result using 
the global-based method. It can be seen that the girl's right hand is outside the curve, 
because its mean is more similar to the background than to its body. On the contrary, 
local-based method uses local mean value inside a window instead of all the image 
pixels. In [188, 337], a local-based method is exploited, where Cm and Cout are set 
as follows: Cj.„ = W(.c_|_j_y4_,), where (M(:C,I/) ~ ^(x+i,y+j)Y is the minimum value 
over all integer pairs (i, j ) such that | i | <m and \j\ < m and pixel (x + i,y + j) is 
inside the curve C; Cout = U(x+i,y+j)^ where {u(^x,y) " ^(x+i,y+j))'^ is the minimum 
value over all integer pairs {i,j) such that |i | < m and \j\ < m and pixel {x + 
hy + j) is outside the curve C. Obviously, this method utilizes local features of the 
image to cope with objects having a non-uniform energy distribution. Unfortunately, 
this method is rather sensitive to image noise, because only one pixel is chosen for 
determining both Ci„ and Cgut- In [81], combining the advantages of both the global-
based and local-based methods is proposed by employing the following Cj,j and Cgut-

^ 7 ' l = average(u(2.+,,,j+j)), where \i\<m,\j\<m 
and pixel {x + i,y + j) is inside the curve C / , 9 ON 

Cout = average(u(3,+i,y+j)), where |i | < m, \j\ < m 
and pixel {x + i,y + j) is outside the curve C 

12.3.5 Rendering and matting of IBR objects 

The depth information is estimated for each IBR object after it has been segmented 
using Lazy snapping [165]. In [80], a depth matching algorithm for rendering and 
post-processing of plenoptic video with depth information was proposed. This al
gorithm brought satisfactory rendering results, but the arithmetic complexity of this 
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algorithm is very high. An improved rendering algorithm with a much low computa
tional complexity is described here. 

More precisely, instead of finding the depth value of the image pixel to be ren
dered from adjacent light field images, the two images are projected using the depth 
values of each pixel to the current viewing position. Consider the reconstruction of 
a pixel V in the viewing grid. If the two pixels obtained from projecting the left and 
right images to the position of pixel V have the sample depth values, then there is no 
occlusion and the value of V can be interpolated from these pixels according to bi
linear interpolation. On the other hand, if their depth values differ considerably (say 
larger than a threshold), then occlusion is said to be occurred. The projected pixel 
with a small depth value will then occlude the other. Therefore, the value of pixel 
V should be equal to the one with a smaller depth value. Furthermore, if multiple 
pixels are projected to the location of pixel V, the intensity of pixel V is assigned to 
the one with the smallest depth value. If only one pixel from the left or right image 
is projected to the position of pixel V, the intensity of pixel V is set to the intensity 
of this pixel. Finally, due to occlusion, pixel V might not have any projected pixels 
from adjacent light field images. In this case, the image consistency concept is used 
to "guess" the intensity of these pixels [80] from neighboring rendered pixels using 
interpolation. A linear interpolation from the two image pixels just before and after 
this occlusion region is performed to cover all undetermined pixels. Image inpaint-
ing techniques [56] can also be employed to fill in holes that result from occlusion 
or change of viewpoints. 

As mentioned earlier, due to possible segmentation errors around boundaries and 
finite sampling at depth discontinuities, it is preferred to calculate a soft, instead of 
a hard, membership function between the image-based objects and the background. 
In other words, the boundary pixels are assumed to be a linear combination of the 
corresponding pixels from the foreground and background: 

I = aF+{l~a)B (12.9) 

where / , F and B are the pixel's composite, foreground and background colors, 
and a is the pixel's opacity component or the alpha map. Using this model, it is 
possible to matte a given object with the original background at different views and 
other backgrounds. The digital analog of the matte (the a-map) is introduced by 
Porter and Duff [235] in 1984. In natural matfing, all variables a, F and B need 
to be estimated and the problem is to find the most likely estimates for a, F and B, 
given the observation / . This can be formulated as the maximization of the posteriori 
probability P{F, B, a\I). Using the Bayesian rule, we have: 

maxP(F,B,a|/) = m&x P{I\F,B,a)P{F,B,a)/P{I). (12.10) 
F,i?,a F,B,a 

Since the optimization parameters are independent of P ( / ) , the latter can be dropped. 
Further, if F, B, a are assumed to be independent, then (12.10) can be written as: 
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Fig. 12.16. Multiple linear camera array of 4D simplified dynamic light fields with viewpoints 
constrained along line segments. 

arg max P{F,B,a\I) = arg max P{I\F,B,a)P{F)P{B)P{a) 
F,B,a F,B,a 

= a r g m a x { l n P ( / | F , B , a ) + l n P ( F ) + l n P ( S ) + l n P ( a ) } . (12.11) 
F,B,a 

Taking the derivatives of (12.11), one gets a set of equations in the estimates of a , F 
and B. Interested readers are referred to [47] for more information. 

It can be seen from the above discussion that for the proper rendering of an 
image-based object, we also need an alpha map and additional geometrical informa
tion in the form of a depth map, apart from its conventional texture pictures or maps. 
The alpha map is produced through the natural matting method discussed above, 
and they are used in the composition and rendering of the image-based objects. This 
information needs to be compressed for efficient storage and transmission of the 
plenoptic videos. More details will be discussed in Sections 13.3 and 13.4. We now 
present some experimental results of the object-based light field system. 

'< 'i •] 
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Fig. 12.17. Two linear camera arrays, each consists of 6 JVC video cameras. 
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12.3.6 Experimental results 

The performance of the above tracking method is evaluated using the "Dance" 
and the "Pingpong" sequences captured by the IBR system in [79]. The system 
is designed to capture both static and dynamic simplified light fields. The simpli
fied dynamic light field is also called the plenoptic video and it is a 4D plenop-
tic function. It is obtained by capturing videos, which are regularly placed along 
a series of line segments, instead of a 2D plane in the static light fields [36, 
79], as shown in Figure 12.16. The main motivation is to reduce the large dimen
sionality and excessive hardware cost in capturing dynamic representations. De
spite the simplification employed, plenoptic videos can still provide a continuum 
of viewpoints, significant parallax and lighting changes along line segments joining 
the camera arrays. More details of plenoptic videos will be given in Section 13.3. 
Figure 12.17 shows the plenoptic video system constructed in [79] for capturing dy
namic scenes. This system consists of two linear arrays of cameras, each hosting 6 
JVC DR-DVP9ah video cameras. The spacing between successive cameras in the 
two linear arrays is 15cm and the angle between the arrays can be flexibly adjusted. 
More arrays can be connected together to form longer segments. Because the videos 
are recorded on tapes, the system is also more portable for capturing outdoor dy
namic scenes. 

Along each linear camera array, a dynamic 4D or a static 3D simplified light 
field can be captured, and the user's viewpoints are constrained along the linear ar
rays of video cameras. The use of multiple linear arrays allows the user to have more 
viewing freedom in sports events and other live performances. It also represents a 
design tradeoff between simplicity and viewing freedom. Other configurations can 
also be employed. The cameras are calibrated using the method in [346]. In order 
to use this method to calibrate the camera array, a large reference grid was designed 
so that it can be seen simultaneously by all the cameras. Using the extracted in
trinsic and extrinsic parameters of the cameras, the videos of the cameras can be 
rectified for rendering. After capturing, the video data stored on the tapes can be 
transmitted to computers through FireWire interface. All these components are rel
atively inexpensive and they can readily be extended to include more cameras. For 
each frame, the initial curve CQ is the tracking result of the previous frame, and the 
object curve of the first frame is obtained manually by lazy snapping, which is a 
semi-automatic method. The level-set contour evolution is implemented using the 
narrow band method, where (12.7) is used as the speed function. The window size 
m for the local energy calculation is fixed to 6. 

Figure 12.15(a) shows typical tracking result of the global-based method for the 
"Dance" sequence as shown in Figure 12.2. The tracking results are shown in Fig
ures 12.15(b)-(c), where the boundaries of the objects are well delineated. It can be 
seen from the results that the method in [80], [81] gives more reasonable result for 
objects with non-uniform energy distribution. Although this method is capable of 
tracking the objects satisfactorily for a number of frames (such as 30), the perfor
mance will start to deteriorate due to accumulation of tracking errors. This is illus
trated in Figure 12.15(d) where parts of the girl's head and right hand are not well 
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delineated. This problem can be alleviated by incorporating the motion information 
of the objects. 

Fig. 12.18. Layered depth map of "Dance" sequence. 

Fig. 12.19. Rendering results of "Dance" obtained by the algorithm proposed in [81]. 
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Fig. 12.20. (a) Input image (left), (b) alpha map. (c)-(d) New images of compositing extracted 
foreground over other background scenes. 

Figure 12.18 shows some of the layered depth maps of the "Dance" sequence, 
and the rendering results are shown in Figure 12.18. The results of natural matting 
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the image-based object are illustrated in Figure 12.20. Figures 12.20(a) and (b) show 
an example snapshot of a segmented image-based object called "Dancer" and its 
associated alpha map computed. Figures 12.20(c) and (d) show example renderings 
of the image-based object, after matting with two different backgrounds or scenes. 
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Fig. 12.21. Segmentation results of the "Pingpong" sequence from the 1st linear camera array. 
Top: Snapshots of original simplified light field images. Second to forth rows: alpha maps of 
the image objects "Player 1", "Ball", and "Player 2." 

Figures 12.21 and 12.22 show additional segmentation results of another sim
plified light field sequence called the "Pingpong" sequence. Some of the rendering 
results at different viewing angles are shown in Figure 12.23. It can be seen that the 
object-based approach yields high quality renderings and it is effective to suppress 
the ghosting and blurring artifacts in a conventional approach with a single mean 
depth. 
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Fig. 12.22. Segmentation results of the "Pingpong" sequence from the 2rd hnear camera array. 
Top: Snapshots of the original simplified light field images. Second and third rows: alpha maps 
of the image objects "Player 1" and "Ball." 

••i-^::.[ • 

vv? "••'••yr^.- .'vi'i '.""^x^-r'i. ,.| i:::::^^'^"):^^^-^ ' • I ' . 

_ T r f n 7 - ' j B . i i j . i - ' j 

. L .. ".V • "-1 

Fig. 12.23. Renderings of the "Pingpong" sequence. 
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Compression of Dynamic Image-based 
Representations 

13.1 The problem of dynamic IBR compression 

The compression algorithms of image-based representations discussed so far are as
sociated with static scenes. The compression and transmission of general dynamic 
image-based representations are not well studied. This is mostly due to the difficul
ties in the capturing, processing and rendering of dynamic image-based represen
tations, which are usually of high dimension. In fact, there are several practical as 
well as theoretical problems in capturing and rendering dynamic image-based rep
resentations. First of all, to provide users with a good immersive viewing experi
ence, the viewing freedom has to be sufficiently large. This calls for a considerable 
number of synchronized video cameras. Secondly, the simultaneous recording of 
these video streams might require sophisticated compression hardware, which can 
be very expensive. Thirdly, the processing and rendering of these video streams to 
provide real-time of nearly real-time performance can be prohibitively large. Finally, 
the calibration of the multiple video cameras is also very complicated and its quality 
will affect significantly the rendering quality of the representations. Nevertheless, the 
ability of image-based techniques in creating photorealistic images of real scenes has 
stimulated a lot of interest in constructing sensor systems for capturing dynamic envi
ronments from multiple viewpoints. We have seen some example systems in Chapter 
3. These include notably the early examples of the Stanford University, Stanford, 
CA, Multicamera Project' and the Carnegie-Mellon University, Pittsburgh, PA, Vir-
tualized Reality Project [133]. The goal of the Multicamera Project is to build an 
array of 128 video cameras using low-cost CMOS camera, inexpensive lens, and 
other processing and compression hardware. A prototype system with six cameras 
was reported [317]. The Virtualized Reality Project uses a set of synchronized cam
eras, and allows the viewer to virtually fly around and watch the event from new 
positions. This is made possible by reconstructing 3D (octree) models at every frame 
offline. 

[Online]. Available: http://graphics.stanford.edu/projects/array/ 
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In this chapter, we shall describe the construction and compression of two 
dynamic image-based representations called panoramic videos [210] and plenop-
tic videos [36], which are 3D and 4D plenoptic functions. We first start with the 
panoramic video in Section 13.2, which has a much lower data requirement. Then, 
we proceed to a simplified dynamic light field called plenoptic videos in Section 
13.3. Other related approaches will be described. Finally, an object-based approach 
for the compression and rendering of plenoptic videos are described. The main ad
vantages of using the object-based representation are: 1) by properly segmenting 
IBR into objects at different depths, the rendering quality in large environment can 
be significantly improved (Section 12.3.2); 2) by coding the plenoptic video at the 
object level, desirable functionalities such as scalability of contents, error resilience, 
and interactivity with individual IBR objects (including random access at the object 
level), etc, can be achieved. More information on the segmentation or object-based 
approach can be found in [270] and Chapter 14 on pop-up light fields. 

13.2 Compression of panoramic videos 

A panoramic video [20, 10, 77] is a sequence of panoramas taken at different time 
instants. It can be used to capture dynamic scenes at a stationary location or in gen
eral along a path, which is also known as a dynamic or time-varying environment 
map. It is basically a video with 360 degrees of viewing freedom. Another applica
tion of panoramic videos is to implement virtual walkthrough applications where a 
series of panoramas of a static scene along a given path is captured. Therefore, it is 
a static environment map where one can freely navigate along predefined paths and 
freely change their viewpoints. Much emphasis has been put on the construction of 
panoramic videos and how they can be constructed and rendered [288, 20, 271, 10, 
77, 114,4,83]. 

Although the amount of data associated with panoramic videos is significantly 
reduced when comparing to other possible dynamic image-based representations, it 
can still be very high, thereby posing a number of practical problems when good res
olution and interactive response are required. To illustrate the severity of this prob
lem, let us consider a 2048 x 768 panoramic image without compression. It will 
occupy about 4.5 MB of storage. A 25 fps video at this resolution would require 
112.5 MB/s of digital storage or transmission bandwidth. Another problem of high-
resolution panoramic videos is the high computational complexity in software-only 
real-time decoding. 

In this section, efficient methods for the compression and transmission of high-
resolution panoramic videos for both dynamic environment maps and virtual walk
through applications will be introduced. Our discussion is based on the work in 
[210]. For dynamic environment map applications, a high-performance MPEG-like 
compression algorithm, which takes into account the random access requirement in 
changing one's viewing angle and the redundancy of panoramic videos, was pre
sented in [210]. For virtual walkthrough applications, the indexing structure pro
posed in [268] is employed to support random access for individual panoramic im-
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Fig. 13.1. Construction of a panoramic mosaic. 

Aligning images at different angles 

Panoramic Image 

Fig. 13.2. Mapping of images onto a cylinder to generate a panoramic image. 

ages so that the user can freely change the viewing position and angle along pre
defined paths. The transmission of panoramic videos over cable networks, local area 
networks (LANs) and the Internet are also briefly discussed. 

13.2.1 Construction of panoramic videos 

A panoramic mosaic can be obtained by projecting a series of images (after reg
istration and stitching) on a cylindrical or spherical surface. Figures 13.1 and 13.2 
show the construction of a panoramic mosaic. Since it is obtained by stitching several 
images together, its resolution is usually very large (e.g., 2048 x 768). Several algo
rithms for constructing such mosaics or panoramas were previously reported in [41, 
288,291, 92]. Using the panorama, it is possible to emulate "virtual camera panning 
and zooming" by projecting appropriate portions of the panorama onto the user's 
screen [41]. Different projections can be used to map the environment map to 2D 
planar coordinates. The cylindrical projection is the most popular for general appli
cations since it is very easy to be captured. A drawback of the cylindrical projection, 
however, is the limited vertical field of view as compared to the spherical projection. 
The cubic projection [93] is another efficient representation of environment maps. 
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Fig. 13.3. Frame 8 of the Cafeteria panoramic video sequence. 

The captured environment map is projected onto the sides of the cube. Therefore, 
each environment map consists of 6 images each associated with one face of the 
cube, making it very simple to manipulate. By capturing a sequence of panoramas at 
different time instants, a panoramic video can be constructed. 

Capturing panoramic videos 

A time-varying environment map can be obtained by taking panoramas at regular 
time intervals either at a given location or along a trajectory. Such time-varying envi
ronment map or panoramic video closely resembles a video sequence with very high 
resolution. There are different methods to capture a panoramic video [10, 77, 114, 
135, 83]. For example, in the FlyCam system [77], multiple cameras are mounted 
on the faces of an octagon with each side equal to 10 cm. In the system reported 
in [10], the camera is fitted with a mirror to produce panoramic videos. Specialized 
hardware for capturing panoramic videos has also been reported in [114], where six 
closely spaced CCDs are assembled together to minimize parallax. Each CCD is 
used to capture an image pointing at one of the six faces of a cube. Their outputs are 
synchronized and streamed directly to disks for storage. 

In [210], the compression of real-world and synthetic panoramic videos are con
sidered. For real-world scenes, panoramic videos captured by the omni-directional 
setup proposed in [135] was used. It comprises a catadioptric omni-directional imag
ing system [207] with a 1300 x 1100 pixel camera, all placed on a movable cart. 
To capture a panoramic video, four video streams of the omni-directional video are 
taken at different camera orientations (front, left, back, right) along the same path. 
This arrangement is used because each omni-directional image has blind spots in the 
middle, and has only about 200 degrees field of view from side to side. The resulting 
panoramic video (with a frame resolution of 2048 x 768) is created by stitching these 
four video streams frame by frame. The panoramic video consists of 381 panoramic 
images. Figure 13.3 shows a typical panorama of the Cafeteria panoramic video se
quence. 

For the synthetic scene, the mosaic images of the environment map were rendered 
using 3D Studio Max®. Cubic projection is used for storing the panoramic video. 
Each panorama has six input images with a resolution of 256 x 256 and there are 
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Fig. 13.4. A typical cubic environment map of the syntiictic environment. 
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Fig. 13.5. Rendering of panoramic video. 

altogether 2910 images. Figure 13.4 shows a typical cubic environment map of the 
synthetic panoramic video sequence Village. 
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Rendering novel video view 

Figure 13.5 is a flow chart showing the decoding of panoramic videos. At the viewer 
side, the compressed videos are decoded and rendered to create a scene at a given 
viewing angle. As the resolution of the panoramic video is usually very large, the de
coding or transmission of the whole panoramic video is often very time-consuming. 
This problem can be remedied by reducing the resolution of the decoded video and/or 
decoding only a given portion of the whole video frame. In virtual walkthrough ap
plications, it is unnecessary to decode the entire video frame because only a fraction 
of the panorama will be used for rendering the novel view. Because of this reason, 
the panorama is usually divided into tiles to simplify decoding and data transfer from 
slower devices such as CD ROM [41]. 

For a panoramic video sequence with 2D planar images, like the real panoramic 
video Cafeteria, each panoramic video frame can be divided into six vertical tiles as 
shown in Figure 13.5. If the whole panorama has a view of 360 degrees, the maxi
mum viewing angle of each tile is 360 / 6 = 60 degrees, which is sufficient for most 
applications. It is therefore only necessary to concurrently decode at most two tiles 
at a time. Based on the current viewing angle, the tiles involved (the shaped ones) 
are decoded and placed in the decoding buffer. Appropriate portion of the panorama 
inside the buffer is used to render the novel view. Tile switching might happen when 
the user changes his/her viewpoint during the playback of the panoramic video. 
Therefore, additional mechanism must be provided in the compressed data stream 
to provide fast tile seeking. This issue is discussed in the following section on the 
compression of panoramic videos. 

13.2.2 Compression and rendering of panoramic videos 

As mentioned earlier, a panoramic video can be used to capture dynamic scenes at 
a stationary location or along a given path. It can also be used to provide seamless 
walkthrough by constraining the virtual camera location to a predefined path for 
image acquisition. Both of these applications are discussed below. 

MPEG-2 video coding of sub-tiles for dynamic environmental map 

Similar to traditional videos, successive panoramic images have significant amount 
of temporal and spatial redundancies. These can be exploited for data compression 
by video coding techniques such as motion compensation. As mentioned in the pre
vious section, each mosaic image is usually divided into smaller tiles to avoid de
coding the whole panoramic video and to reduce the data transfer requirement when 
slower secondary devices are used. It is therefore natural to treat each of these tiles 
as a video sequence and compress these tiles individually. If a panoramic video with 
a resolution of 2048 x 768 is divided into six non-overlapping tiles, it yields six 
video sequences each of which has a resolution of 352 x 768. To provide function
alities such as fast forward/backward and to make the panoramic video compatible 
to most decoders, one can employ the commonly used MPEG-2 video coding stan
dard [120] to compress each of these video streams. Another advantage of MPEG-2 
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Fig. 13.6. GOP setting in MPEG-2 bitstream. 

(as shown by the results later) is that it is very efficient in compressing high reso
lution panoramic videos with a compression ratio of more than 100 times, yet with 
reasonably good reconstruction quality. For applications involving frequent editing 
of the videos, separate coding of the mosaic images might be desirable. Under these 
circumstances, the use of still image coding techniques such as JPEG 2000 (Sec
tion 10.4) are desirable. Next, we shall consider the organization of the compressed 
video streams in order to provide efficient access to individual tile during decoding. 

The selective decoding problem (tile seeking) 

For transmission and storage of panoramic videos, individual tiles must be orga
nized in an efficient manner in order to support fast switching between tiles during 
decoding. Figure 13.6 shows the format of a tile or video stream encoded using the 
MPEG-2 standard. Consecutive image frames of a given tile are arranged in groups 
called Group of Pictures (GOP). In each GOP, the image frames are encoded as /-, 
P-, or Z?-pictures. The arrows in Figure 13.6 show the inter-dependency of various 
pictures in a GOP due to motion prediction. As shown in the figure, the coder has 
seven pictures in each GOP, which consists of one /-picture, two P-pictures and four 
5-pictures. Also shown in Figure 13.6 is the sequence order of the compressed im
age frames to be transmitted. Note that the reference pictures are transmitted before 
the B-pictures because they must be decoded before the B-pictures. They serve as 
references for reconstructing the B-pictures in between. 

Figure 13.7 illustrates how the six files (video streams) of the panoramic video 
are multiplexed in the method in [210]. Each tile is encoded by the MPEG-2 standard 
with the same GOP structure shown in Figure 13.6. The compressed data of the tiles 
in the same panoramic video frame are packed together. This allows the decoder to 
locate very quickly the corresponding /-pictures when decoding the required tiles. 
An individual picture in each tile can be accessed randomly by searching for the 
appropriate picture header. During decoding, the viewer can selectively decode the 
tiles required by the user, for example, streams 1 and 2 in Figure 13.7. The novel 
view can then be generated by re-mapping appropriate pixels in the tiles onto the 
user's screen. 
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Fig. 13.7. Multiplexing of the tiles (streams) in the MPEG2 compressed panoramic video. 

When the viewing angle is changed in such a way that some of the required pix
els are no longer in the tiles currently being decoded, switching to the new tile(s) 
has to be performed. If this happens during the decoding of P- and B-pictures in a 
GOP, tile switching can only begin in the next GOP. It is because the /-pictures of the 
new tiles in the current GOP might not be available. (In practice, previously decoded 
data is usually not buffered.) Hence, the separation of/-pictures in panoramic video 
streams should not be very large. Otherwise, it would introduce an unacceptable de
lay in switching from one stream to another. As mentioned earlier, there are seven 
images in each GOP. At a frame rate of 25 fps, the maximum delay during tile switch
ing is therefore 0.28 second, which is quite acceptable. Other values can be chosen 
according to one's tradeoff between the compression performance and the delay in 
response time. The synchronized /-pictures also allow us to preserve the fast forward 
and fast reverse capability in the MPEG-2 standard. Notice that the number of P-
and S-pictures in GOPs from different tiles can be different (as well as GOP from 
the same tile), provided that their /-pictures are synchronized. It helps to improve 
the compression performance, but at the expense of more complicated encoding and 
decoding processes. 

Modified MPEG-2 video coding for virtual walkthrough over static scenes 

For virtual walkthrough applications in a static scene, users are allowed to move 
along a given path and change freely their viewpoints. The compressed panoramic 
video bitstream is usually stored in local storage or downloaded from the network 
before decoding. The image frames of the panoramic video are then accessed on 
demand for rendering according to the specified viewing position. The situation is 
somewhat similar to the coding of Concentric Mosaics, except that the MPEG al
gorithm has to be modified in order to support random access to individual image 
frames. In Figure 13.8, a set of pointers to the starting locations of each image frame 
in the compressed data is first determined and stored in an array prior to rendering. 
During rendering, the compressed data for the required image can be located quickly. 
Alternatively, the pointers can be embedded in the compressed bitstreams. For an /-
picture, the pointer structure mentioned earlier can be used to access the compressed 
data. If B-pictures are added, the pointer structure only enables us to efficiendy de
code the motion vectors and the prediction residuals and we still need to decode the 
two reference /-pictures. The dependence will be very complicated if P-pictures are 
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Fig. 13.9. Filter graph of panoramic video viewer 

employed wliicli, as mentioned earlier, is very similar to the situation in coding Con
centric Mosaics and light fields in Sections 12.2.3 and 12.3, respectively. Because 
of these reasons, f-pictures are usually not employed in this compression algorithm 
due to their inter-dependencies. In [210], no rate control algorithm is applied and a 
uniform quantizer is used for the /- and Z?-pictures for simplicity. 

Rendering of panoramic videos 

For dynamic environment maps, the panoramic videos are usually streamed from 
some servers. In [210], the panoramic video viewer of the system is implemented 
using the Microsoft® DirectShow® and Direct3D® application programming in
terfaces (APIs) [66]. The DirectShow API is a media-streaming architecture for the 
Microsoft® Windows® platform, which provides high-quality capture and play
back of multimedia streams. The basic building block of DirectShow is a software 
component called SL filter. A filter generally accepts a multimedia stream as its input 
and performs a single operation on it to produce the output. For example, a filter 
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Fig. 13.10. Frame 8 of the decompressed panoramic video sequence Cafeteria at the bit rate 
of 1.5 Mb/s per tile. 

for decoding MPEG-2 videos has its input an MPEG-encoded stream and the out
put is an uncompressed RGB video stream. Figure 13.9 shows the filter graph of the 
panoramic video viewer for each user. Multiple data streams associated with a single 
panoramic video are retrieved from local storage devices or from the video server. 
Each data stream is then decoded using the Elecard MPEG-2 Multiplexer and Video 
Decoder filter [202]. The decoded video frames are copied to the texture buffer of the 
Panoramic Video Renderer filter for rendering. For fast rendering speed, Direct3D is 
used to render and display the output images in the Panoramic Video Renderer filter. 
More precisely, the decoded panoramic image is projected onto a geometry model, 
which can be cylindrical, spherical or cubical. Subsequent rendering of the scene at 
different viewing angles is handled by DirectSD APIs. The viewer allows the user 
to pan, zoom and navigate interactively in the video by choosing his/her viewing 
angles. 

For virtual walkthrough applications, the modified MPEG-2 video decoder re
trieves the panoramic images from the compressed bitstream. The rendering and 
display are also implemented using DirectSD APIs. The user interface for the vir
tual walkthrough application has two windows: the viewport and the plan map of 
the scene. The viewport renders the virtual camera view at the current location. The 
plan map indicates the current position of the virtual camera and the current viewing 
direction. The user can freely navigate in the static environment map or change its 
location along the path by clicking at the desired destination on the plan map. 

Table 13.1. Compression performance of the panoramic video sequence Cafeteria. (25 fps, 
resolution: 352 x 768 x 6) 

Bit-rate Compression Mean PSNR (dB) 
(Mb/s) Ratio Y U V 
5.727 l62 42.16 45.69 44.74 
8.596 108 45.40 47.10 46.60 
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Fig. 13.11. Example screenshots of ihe synthetic environment during tiie virtual walkthrough. 

Table 13.2. Compression performance of the synthetic panoramic video sequence Village, 
(resolution: 256 x 256 x 6) 

Compression Mean PSNR (dB) 
Ratio Y U V 
30.49 36.13 39,54 41.40 
35.02 35.26 39.10 41.03 

Experimental results 

The compression results of the Cafeteria panoramic video sequence described in 
Section 13.2.1 is given to illustrate the performance of the algorithms for dynamic 
scenes. Although the Cafeteria sequence was captured from a static scene, it is used 
for simplicity to illustrate the algorithm in the dynamic situation. The six tiles of 
the panoramic video were encoded using the MPEG-2 video coding standard. Each 
stream has a Group of Picture (GOP) consisting of seven image frames with two 
6-pictures between successive /- or P- pictures as illustrated in Figure 13.6. Table 
13.1 shows the compression performance of the panoramic video sequence using 
the modified MPEG-2 algorithm at different bit-rates (target bit-rate of 1 and 1.5 
Mb/s per tile). Figures 13.3 and 13.10 show respectively a typical panorama and the 
decompressed tiles of the panorama. The results show good quality reconstruction 
with a compression ratio of 108. 

When the compressed data is streamed from a remote PC through a 100 Base-T 
LAN, the rendering speed of the viewer is about 7 fps (neglecting network conges
tion) using a Pentium 4 1.8 GHz PC with 256 MB memory. For the virtual walk
through (static scene) experiment, the synthetic panoramic video sequence Village 
was used. For simplicity, it was projected onto a cubic geometric model. Each en
vironment map therefore consists of six images, one for each face of the cube. The 
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image sequence of each face was compressed as a video stream. The appropriate im
age frames, according to the current viewing angle, were decoded during rendering. 

Table 13.2 shows the compression performance of the synthetic panoramic video 
sequence. Example screenshots of the synthetic environment during the virtual walk
through experiment are shown in Figure 13.11. The perceptual quality is quite good 
with a compression ratio of 30. The low compression ratio of the synthetic scene as 
compared with the real scene is due to its lower resolution, complicated textures, and 
sharp edges, which make coding more difficult. 

For real-time rendering, 20 fps from raw data and 15 fps from compressed bit-
stream can be achieved using a Pentium 4 1.8 GHz PC with 256 MB memory. It is 
expected the frame rate can be increased after further optimization/enhancement of 
the CH-I- source program. The overall results demonstrate that panoramic videos are 
an efficient means for providing impressive 3D visual experience to the users. Next, 
we briefly outline the transmission aspect of panoramic videos over cable networks, 
LANs and the Internet. 

13.2.3 Transmission of panoramic videos 

In order to deliver the interactive virtual walkthrough experience offered by panoramic 
videos, the compressed data stream can be broadcast or transmitted using video-on-
demand (VOD) systems over, for example, the Internet, LANs or cable networks. 
For broadcasting applications, say, over cable networks, the whole panoramic video 
can be transmitted through a few cable TV channels with each channel carrying one 
or more tiles of the video streams. The set-top box can be configured according to 
the user input so that appropriate tiles in the panoramic video will be decoded. Be
cause the panoramic videos are divided into tiles, only a limited number of tiles, 
two in the system proposed in [210], have to be decoded. Additional hardware is re
quired to render novel views from the decoded video streams. For broadcasting over 
LANs, the decoding and rendering are most likely performed by a workstation or PC. 
With present-day technology, real-time rendering and decoding of panoramic videos 
do not present significant problems. In applications where the channel has limited 
and/or dynamic bandwidth such as communications over the Internet, the tiles can 
be transmitted on an "on-demand" basis, where only the required video streams are 
transmitted. Further reduction of bandwidth for transmission can be achieved by cre
ating a scalable bitstream using, for example, multiresolution techniques. 

In [210], a video on demand (VOD) system for delivering panoramic videos over 
LAN using an "advanced delivery protocol" (ADP) is described. Interested readers 
are referred to [210] for further information. 

13.3 Dynamic light fields and plenoptic videos 

13.3.1 Introduction 

As mentioned in Chapter 12, an important problem of dynamic image-based rep
resentations is the logistical difficulties in their capturing and transmission, which 
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involve huge amounts of data. On the other hand, higher dimensional plenoptic func
tion can provide more viewing freedom and multiple viewpoints at each time instant. 
Therefore, they can also be viewed as versatile generalizations of traditional images 
and videos, which might be further developed into new interactive or immersive 
television systems. Because of these potential advantages, there is a growing inter
est in the video coding, computer vision and graphics communities in developing 
efficient capturing, compression and rendering techniques and systems (also known 
as intermediate view synthesis in the coding community) for dynamic image-based 
representations. 

In [36, 37], a system for real-time capturing, compression and rendering of a 
simplified dynamic light field (SDLF) for dynamic scenes was developed. Because 
of their close relationship with traditional videos, it is also referred to as the plenop
tic videos. The system is based on parallel processing using inexpensive equipment 
so that the dynamic IBR can be captured and processed mosdy in real-time, which is 
one of the major obstacles in dynamic IBR research. An MPEG-2-like compression 
algorithm employing both DCP and temporal compensation was also proposed for 
the efficient storage and transmission of plenoptic videos [35]. In a SDLF, the view
points of the user are constrained along line segments instead of a 2D plane in [160]. 
This greatly reduces the complexity of the dynamic IBR system. However, unlike 
panoramic videos, users can still observe significant parallax and lighting changes 
along the horizontal direction. Experimental results show that DCP improves the 
coding efficiency. Possible applications of the system are "interactive 3D electronic 
catalog or brochures," "short plenoptic video advertisement clips," and 3D video
phone. 

13.3.2 The plenoptic video 

In this section, we shall briefly describe the construction, compression, and ren
dering of the plenoptic video system in [36, 37]. We then briefly summarize and 
compare a number of related approaches in capturing dynamic image-based rep
resentations at Section 13.3.5. Among the static image-based representations re
ported so far (i.e., panoramas. Concentric Mosaics, light fields and lumigraphs), 
panoramas, light fields and lumigraphs are simpler to be generalized to dynamic 
scenes. Although the Concentric Mosaic is an excellent representation for static 
scenes, capturing dynamic Concentric Mosaics can be very complicated. It is be
cause the capturing of Concentric Mosaics usually requires taking more than one 
thousand pictures uniformly by an outward facing camera, which moves along 
a circle with a certain radius. One possible solution is to capture only a por
tion of the videos on the circumference of this circle so as to limit somewhat 
the users' viewpoint inside the circle. Contrarily, as we have discussed in Section 
13.2, the generalization of panorama to dynamic scenes, i.e., the panoramic video, 
is considerably simpler. The basic problems of capturing, data compression and 
transmission of panoramic videos have been addressed quite satisfactorily in [138, 
211] and summarized in Section 13.2. In order to provide users with the experience 
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Fig. 13.12. 4D simplified dynamic light field (the plenoptic video); viewpoints constrained 
along a line (more generally on line segments) in a dynamic environment. 
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Fig. 13.13. Block diagram of the plenoptic video system. 

of parallax and lighting changes, a simpler dynamic generalization of light fields was 
chosen in [37]. 

From [33 J and Part II, the sampling rate of static light fields depends on the depth 
of the scene. In order to reduce the effect of aliasing, the number of cameras in a 2D 
arrangement can be very large, say 16 x 64. This creates hundreds of videos, which 
have to be compressed and stored in real-time. The calibration of such a large camera 
array is also problematic and very time consuming. To avoid this large dimensionality 
and the excessive hardware cost, the study in [37] was limited to light fields with 
viewpoints being constrained along a line (or line segments), as shown in Figure 
13.12. This simplified dynamic light field, which is called the plenoptic video, has 
a dimensionality of four. Apart from the simplicity of the overall system, there are 
several reasons for such a choice. First of all, the user can still observe significant 
parallax and lighting changes along the horizontal direction. Secondly, the given 
number of cameras can be used to maximize the sampling rate along the horizontal 
direction and thus reduce the risk of insufficient sampling in a 2D configuration with 
the same number of cameras and horizontal panning range. 
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Fig. 13.14. Physical construction of ttie plenoptic video system [37]. 

Figures 13.13 and 13.14 show the block diagram and physical construction of 
the plenoptic video capturing and processing system. A set of synchronized video 
cameras is used to capture light field images at each time instant to form sequences 
of videos. The video signals are then fed to real-time video compression boards in the 
parallel processing system, which consists of a number of PCs connected together 
through a high-speed network such as the 100 BaseT or Gigabit Ethernet. With the 
advent of video compression hardware, inexpensive real-time MPEG-2 compression 
boards are now readily available. The compressed videos are stored directly to the 
hard disks of the PCs. Again thanks to the advent of PC technology, high-speed and 
inexpensive hard disks with 120 Gbytes of storage or more are now in common use. 
As a result, the parallel arrangement is able to capture 4D dynamic light fields for a 
fairly long period of time, say several hours. 

To avoid unnecessary complication, the prototype system in [36] employs 8 (up 
to 10) cameras as a reasonable tradeoff between hardware complexity and perfor
mance. In contrast to the light field camera in [317], the system uses closely spaced 
CCD cameras to reduce problems due to insufficient sampling and avoid large varia
tions of CMOS cameras, which usually complicate the camera calibration. This sys
tem is relatively easy to construct, as it requires only off-the-shelf components and 
readily available equipment. During construction, the camera lenses are carefully in
stalled to the hardware stand and similar focuses and tilting angles are maintained. 
The cameras are then calibrated using the method in [346]. This method is origi
nally proposed for calibrating a single camera and the relative position of the camera 
and the viewing angle with respect to a reference grid position that can be estimated. 
More precisely, five images (the grid images) of a certain grid pattern, which consists 
of squares evenly spaced at a regular grid, are taken by the camera at five different 
positions. The corners of the squares in each grid image are then determined in order 
to recover the intrinsic and extrinsic parameters of the cameras. This information al
lows us to correct the geometric distortion of the camera lens, determine the relative 
positions and viewing angles of the cameras with respect to the reference grid. After 
a reference camera plane is chosen, the images captured from all the other cameras 
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Fig. 13.15. Compression of 4D SDLF. 

can be wrapped to the same coordinate of the reference camera. The rectified videos 
of the cameras are more amenable to rendering. 

Another valuable feature of the system is its distributed nature, which allows 
capturing, compression, processing, and rendering of the plenoptic video to be per
formed efficiently. It is believed that parallel processing is essential to cope with the 
demanding storage and computational requirements of plenoptic videos and other 
dynamic image-based representations. The real-time rendering of the plenoptic video 
and rendering results will be described in more details in Section 13.3.4. Next we 
shall discuss the compression of the plenoptic videos. 

13.3.3 Compression of plenoptic videos 

The compression of plenoptic videos is closely linked to conventional video com
pression. However, as video streams in a plenoptic video are taken at nearby positions 
in a ID array, they appear to be shifted relative to each other, because of the disparity 
of image pixels. In order to explore this correlation in the plenoptic video, the video 
streams are divided into groups and are compressed together using the temporal and 
disparity compensation. The MPEG-like algorithm proposed in [35] for coding the 
video streams in the plenoptic video has the advantages of good performance and 
relatively low implementation complexity. It employs both temporal and spatial pre
diction to better explore the redundancy in the video streams. This can be viewed as 
the generalization of the DCP techniques for coding of static light fields [164, 179, 
298, 3411 and stereo image coding [174, 214] to the dynamic situation. 

The MPEG-like compression algorithm in [35] is shown in Figure 13.15. For 
simplicity, only three videos are shown, and it is called a group of field (GOF). To 
provide random access to an individual picture, a modified MPEG-2 video compres
sion algorithm is employed to encode the image frames. 

There are two types of video streams in the dynamic light field: main and sec
ondary video streams. Main video streams are encoded using the MPEG-2 algorithm, 
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which can be decoded without reference to other video streams. The image frames in 
a main stream are divided into /-, P-, and S-pictures, where /-pictures are coded us
ing intra-frame DCT-based transform coding, while F-pictures are coded by hybrid 
motion compensated/transform coding using previous /- or P-pictures as references. 
B-pictures are coded by a similar method except that forward and backward motion 
compensation, which are indicated by the block arrow in Figure 13.15, are performed 
by using nearby /- or P-pictures as references. The images captured at the same time 
instant as the /-pictures in a main stream constitute an /-field. Similarly, the P- and 
B-fields are defined as the images containing respectively the P- and /^-pictures of 
the main video stream. Pictures from the secondary stream in the /-field are encoded 
using spatial prediction (SP or DCP) from the reference /-picture in the /-field. Pic
tures from the secondary stream in a P-field are predicted using spatial prediction 
from adjacent P-pictures in the main stream, and the forward motion compensation 
from the reference /- or P- fields in the same secondary stream. Pictures from the 
secondary stream in a B-field are predicted using spatial prediction from adjacent 
/^-pictures in the main stream, and the forward/backward motion compensation from 
nearby reference /- and/or P- fields in the same secondary stream. 

For simplicity, only one main stream is included in each GOF. More sophisticated 
disparity compensation schemes such as bi-directional prediction with multiple main 
streams can be incorporated in a single GOF or successive GOBs. The scheme can 
also be generalized to 2D GOFs in the compression of 5D dynamic light fields, with 
main streams distributed on certain points in the 2D array, instead of a ID array con
sidered here. In order to maintain a more uniform reconstruction quality among the 
plenoptic videos, a higher bit rate is allocated to the main streams than the secondary 
streams because the /-pictures in the main streams usually require considerably more 
bits than P- and /^-pictures. Furthermore, the rate control algorithm of the MPEG-2 
Test Model 5 is used to prevent buffer overflow and underflow problems. To address 
the random access problem, pointers are embedded into the compressed data stream 
as in [268,211]. During rendering, the required macroblocks are selectively decoded 
from the compressed data streams. This unavoidably adds to the overheads in the 
compressed data streams 

Figure 13.16 shows several snapshots of two plenoptic videos captured by the 
system in [37] (rectified): "Glass Music Box" and "Crystal Dragon". They are ex
tracted from a plenoptic video of about half an hour long. In the plenoptic video 
"Glass Music Box," a glass music box was placed at the center of the scene and 
it was rotating at a regular speed. A moving spotlight was used to change dynami
cally the lighting of the scene. It can be seen from the images that significant light
ing changes, reflections, and parallax are captured. The "Crystal Dragon" sequence 
consists of a lead crystal in the shape of a dragon, which was placed on a wooden 
platform. Beside it is another crystal turtle, which was placed on a lighting platform 
that changed color periodically. A burning candle and a moving spotlight were also 
included to demonstrate the lighting changes and reflective properties of the scene. 
Each uncompressed video stream consumes about 30 Gbytes of storage. Figure 13.17 
shows another synthetic plenoptic video, called the "Ball" sequence, which is gener
ated using computer graphics techniques. It was rendered using the 3D Studio Max 
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Fig. 13.16. Four snapshots of the plenoptic videos "Glass Music Box" and "Crystal Dragon". 
Each row consists of the eight images taken from the cameras (form left to right) at a given 
time instant. 

Fig. 13.17. Snapshots of the "Ball" sequence (only images from five virtual cameras are 
shown). 

software and the data sets consist of 16 x 1 24-bit RGB videos with 320 x 240 
pixels and 24 frames per second. Despite the relatively large depth variation, the use 
of a mean depth in rendering this plenoptic video does not introduce large rendering 
artifacts. Also, it was observed from the "Ball" sequence that the plenoptic video is 
not very sensitive to occlusion if the depth variation is not too large. For large depth 
variations, artifacts in the form of ghost images and image blurring will appear and 
more accurate geometrical information such as depth maps are required [33]. An ef
fective approach is to employ the pop-up light field in Chapter 14 or the object-based 
approach described in Section 12.3.2, where the scene is segmented into layers with 
different depth values. The compression issues of the object-based plenoptic video 
will be discussed later in Section 13.4. 

Before closing this subsection, let us evaluate the above compression algorithm 
using the "Glass Music Box," the "Crystal Dragon," and the synthetic "Ball" se
quences. Coding results for different number of video streams in a group of fields 
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Fig. 13.18. Coding results of the synthetic plenoptic videos "Ball.' 
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Fig. 13.19. Coding results of the plenoptic videos "Glass Music Box.' 

(GOF) were also given, and they are plotted in Figures 13.18, 13.19 and 13.20. For 
SP3, there are three video streams in the GOF as illustrated previously in Figure 
13.15. For SP5 and SP7, there are five and seven video streams, respectively. As a 
comparison, all video streams of the synthetic and real plenoptic videos were also 
compressed by MPEG-2 algorithm independently. It can be seen that the perfor
mance of the algorithm using both temporal and disparity compensation has signif-
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Fig. 13.20. Coding results of the plenoptic videos "Crystal Dragon.' 
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Fig. 13.21. Typical reconstructed images. The "Ball" sequence in the main (a) and secondary 
(b) video streams (194 kbps per stream). The "Glass Music Box" sequence in the main (c) 
and secondary (d) video streams (583 kbps per stream); The "Crystal Dragon" sequence in the 
main (e) and secondary (f) video streams (624 kbps per stream). 

icant improvement over the independent coding scheme. This shows that there is 
a significant amount of spatial redundancy among the video sequences. When the 
number of video streams in the GOF, and hence the number of secondary streams, is 
increased, the PSNR improves because less /-pictures are coded and better disparity 
prediction is obtained in the plenoptic video. However, the difference between SP5 



Compression of Dynamic Image-based Representations 285 

Table 13.3. The number of macroblocks used for different types (the synthetic "Ball" se
quence). 

Main Secondary Stream 
Stream d = l d = 2 d = 3 

97 kbps 
Intra MB 9.3% 0.1% 0.2% 0.3% 

Temporary MB 90.7% 44.5% 49.0% 50.9% 
Spatial MB 0.0% 55.4% 50.8% 48.8% 
743 kbps 
Intra MB 9.0% 0.1% 0.2% 0.2% 

Temporary MB 91.0% 62.1% 66.8% 67.4% 
Spatial MB 0.0% 37.8% 33.0% 32.4% 
1.78 Mbps 
Intra MB 9.0% 0.1% 0.2% 0.2% 

Temporary MB 91.0% 64.7% 69.4% 70.4% 
Spatial MB 0,0% 35,2% 30,4% 29,4% 

and SP7 is small because disparity compensation will be less effective when video 
streams are far apart. Figure 13.21 shows several typical reconstructed images. They 
show good quality of reconstruction at: 194 kbps per stream for the synthetic "Ball" 
sequence (compression ratio = 204); 583 kbps per stream for "Glass Music Box" 
sequence (compression ratio = 341) and 624 kbps per stream for "Crystal Dragon" 
sequence (compression ratio = 319). 

In order to evaluate the performance of spatial prediction, the number of mac
roblocks used in different prediction types for the synthetic "Ball" sequence were 
calculated and they are summarized in Table 13.3. At a bit rate of 1.78 Mbits/s per 
stream, secondary video streams which are next to the main video stream (distance 
d = 1) have 35.2% of their macroblocks predicted by disparity compensation pre
diction. When the distance (d) increases, there are fewer macroblocks predicted spa
tially. This drops to 29.4% when the distance is increased to 3. The reason is that the 
prediction will become less effective when the distance from the main video stream 
increases. This might be improved by using bi-directional disparity compensation 
prediction. Furthermore, it is noted that this percentage depends on the target bit 
rate. For example, when the bit rate decreases, more macroblocks (up to 50%) will 
employ spatial predication. 

13.3.4 Rendering of plenoptic videos 

There are several major considerations and challenges in the real-time rendering of 
plenoptic videos. Due to the difficulties in controlling the positions of the image sen
sors inside the cameras, the optical centers of the cameras do not usually lie on a 
straight line or even on the same plane. This problem is less serious in capturing 
static light fields where the relative positions of the camera can be accurately con
trolled. Fortunately, the relative positions of the cameras can still be recovered from 
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(b) 

(c) 

Fig. 13.22. Renderings from the real-time plenoptic video Tenderer, (a) and (b) show respec
tively three virtual views at two different time instants for the "Glass Music Box" and the 
"Crystal Dragon" sequences, (c) shows two virtual views of the "Train" sequence. 

the camera calibration described in Section 13.3.2. Since the coordinates calculated 
do not lie on a straight line, unstructured lumigraph rendering as proposed in [22] or 
object-based approach have to be used. In [37], it was found that the geometric dis
tortion and the rotation of the cameras could be satisfactorily compensated, partially 
because of the manual adjustment of the cameras prior to the capturing. 

The second problem concerns with the artifacts encountered due to the incorrect 
depth estimation. For the "Glass Music Box" and "Crystal Dragon" sequences, the 
depth variation is relatively small and according to the plenoptic sampling analysis 
[33], the rendering artifacts will be small as long as the focal plane is chosen as the 
mean depth of the scene. For more complicated scenes, more geometry information 
would be required. 

The final problem is the real-time rendering of the plenoptic video. If the plenop
tic video is decoded into raw images and stored in a hard disk, real-time rendering 
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can readily be achieved. However, the memory requirement is very large and the 
playback time is limited. If the plenoptic video is rendered from the compressed bit 
stream, then even with the use of selective decoding the computational requirement 
for the decoding and rendering will become very large. The basic idea of selective 
transmission/rendering is to decode in parallel the multiple streams of the videos in 
a network of computers, and transmit those pixels required to the rendering machine 
over the network, possibly with simple compression. This offloads the rendering ma
chine at the expense of longer user response time. However, we believe that selective 
transmission is essential to the distribution of plenoptic videos in future applica
tions. Using selective transmission, it is possible to stream continuously a plenoptic 
video with (256 x 256) resolution at a frame rate of 15 fps over the network. Due 
to network delay, there is a slight delay in the user response. The frame rate and the 
resolution can be increased if the raw data stream is compressed by a simple coding 
method such as vector quantization. For rendering from raw data in the hard disk, 
real-time rendering can be achieved with a resolution of (720 x 480) and a frame 
rate of 15 fps. 

Figure 13.22 shows several virtual views rendered from the "Glass Music Box," 
the "Crystal Dragon" and the "Train" plenoptic videos . It can be seen that the light
ing changes and reflective properties of the glass and lead crystal are well captured. 
The "Train" sequence demonstrates that scenes with more complicated details, oc
clusion, and moving objects (the toy train in the middle) can be rendered with rea
sonably good quality. It was found that slight artifacts, in the form of ghosting and 
blurring, are still present in some of the rendered images, because of the difficulty 
in determining exactly the camera positions and inaccurate depth values. It was also 
found that the artifacts are less noticeable if the objects are farther away from the 
camera planes because of the reduced resolution of the images as well as the reduced 
sensitivity of the image pixels to the errors due to camera calibration and depth val-

13.3.5 Other approaches 

There were also previous attempts to construct light field video systems and a sum
mary has been given in Chapter 3. Systems that are related to the plenoptic videos in
clude the Stanford multi-camera array [317], the 3D rendering system of Naemura et 
al. [205], and the (8 x 8) light field camera of Yang et al. [335]. The Stanford Multi-
Camera Array project [317] was probably the first attempt to develop a large-scale 
camera array and capturing hardware towards the difficult problem of dynamic IBR 
modelling. It employs low cost CMOS sensors and dedicated compression hardware. 
A preliminary six camera-array was reported in [317] and later extended to include 
more than one hundred cameras. Subsequently, B. Goldliicke et al. [87] used the 
video sequences captured by the (3 x 2) array in [317] to investigate the rendering 
of light field videos. The images with a resolution of 320 x 240 from the 6 cameras 
are warped and blended, according to a pre-computed disparity map, to synthesize 
the novel views at (640 x 480) resolution with approximately 14 fps (block size = 4). 
The system can handle larger depth variations but also potentially introduce artifacts 
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due to inaccurate depth estimation. The objectives and design tradeoffs of the system 
in [37] and that in [317] are quite different. One advantage of the system in [37] is 
its good rendering quality, which is largely attributed to the higher resolution and 
better quality of the CCD sensors, smaller camera spacing, and camera calibration 
employed. On the other hand, the system in [317] is more concerned with large-scale 
modelling. In [218], the image pixels for rendering a given view are retrieved using 
hardware from an array of CMOS imaging sensors in order to avoid the high data 
rate for online rendering. 

The system of Naemura et al. [205] consists of 16 closely spaced CCD cam
eras in a (4 X 4) 2D arrangement (can be reconfigured to a linear array similar to 
[37]). It does not incorporate real-time data compression as for the systems in [317, 
37]. Instead, dedicated processors (Sony YS-Q430) are used to combine the video 
sequences from four cameras to form a video sequence divided into four screens. 
Therefore, the resolution is signilicandy reduced because of the bandwidth con
straint. The final rendered view, using an Onyx2 workstation, has a resolution of 
only 180 X 120. On the other hand, the captured plenoptic videos in [37] have a res
olution of 720 X 480 pixels at 30 fps. No camera calibration is performed in [205] 
and motion parallax is suppressed using linear translation operations. One distinct 
feature of this system is the use of a real-time depth map estimation board from Ko-
matsu, FZ930 board (280 x 200 pixels, 8-bits depth map) at 30 fps, to divide the 
image into 3 layers for rendering (10 fps at 180 x 120 resolution). The system in 
[37] does not address scenes with large depth variation and by limiting the depth 
variation and using light field rendering with a single mean depth, fairly high quality 
real-time rendering of raw video data at a resolution of 720 x 480 with 15 fps can 
be achieved. For rendering from compressed data, the resolution is reduced to 256 x 
256, due to limitation of processing power and transmission bandwidth over the 100 
Base-T network without transcoding. 

The (8 X 8) light field camera of Yang et al. [335] is mainly designed for interac
tive image-based rendering. Unlike the Stanford light field camera and the system in 
[37], all the videos from the video cameras are not recorded or stored due to difficul
ties in compressing the videos in real-time. Images from the cameras are divided into 
fragments and those fragments required to synthesize a given view are transmitted 
to a compositor for rendering. It is impossible to replay the videos as in [37], which 
resembles a traditional video system with continuous multiple viewpoints along a 
trajectory. The camera spacing is also very small to avoid aliasing. Camera calibra
tion is done by first calibrating one of the cameras using Zhang's algorithm [346]. 
The rest of the cameras are calibrated using a structure from motion algorithm. Fi
nally, a large nonlinear optimization is performed to cater for non-identical intrinsic 
parameters of the cameras. Manual color control adjustment in some of the sensors is 
necessary in [335]. The main features of the above systems are summarized in Table 
13.4. 
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Sensor 

Data 

Resolution 

Rendering 

Resolution 

Hardware 

Required 

Rendering 

Method 

Camera 

Calibration 

Real Time 

Compression 

for Storage 

Applications 

Plenoptic Video 

1/4 inch color CCD 

(CCX-Zl l ) 

7 2 0 x 4 8 0 30fps 

From raw data 

7 2 0 x 4 8 0 15fps, 

streaming 

2 5 6 x 2 5 6 15fps. 

8 x 1 cameras. 

2.5 cm apart. 

9 Pentium 4 PCs, 

8 Pinnacle PCTV 

boards, 100 

B a s e l LAN. 

Light field rendering 

with mean depth. 

Can be extended to 

include depth map. 

Zhang's algorithm 

13461 for all cameras 

using calibration 

patterns. 

White balancing for 

color correction. 

MPEG-2 (1:240 

compression ratio). 

Streamed to harddisk 

of individual PCs. 

Modified MPEG-2 

algorithm for 

efficient storage and 

transmission. 

hiteractive 3D 

electronic catalog 

or brochure, short 

adverdsing clips. 

head and shoulder-

type 3D videophone. 

[205] 

1/4 inch color CCD 

(XC-333) 

7 2 0 x 4 8 0 30fps (will 

be decimated due to 

no compression) 

1 8 0 x l 2 0 10fps 

(3 depth layers) 

1 6 ( 4 x 4 ) cameras 

3.1 cm apart. 

Dedicated 

processors (Sony 

YS-Q430), Onyx2 

workstation (4 

400MHz R12000) 

with a DIVO, real

time depth map 

esfimation board, 

Komatsu, FZ930. 

A 3-Iayer depth map 

is used to blend the 

images for 

rendering. 

Nil 

For interactive 

image-based 

rendering. 

Very low 

resolution. 

Interacfive image-

based rendering. 

[335] 

1/4 inch color CCD 

(iBOT) 

6 4 0 x 4 8 0 30fps 

3 2 0 x 2 4 0 18fps 

8 x 8 cameras. 

farther apart than [205]. 

7 Pentium 4 PCs 

connected by 

fire wire. 

Images divided into 

rectangles and 

rendered using 

different focal plane. 

Zhang's algorithm 

[346] for one camera 

and others with 

structure from mofion 

algoritlun. Might 

need manual color 

control adjustment. 

Nil. 

For interacfive 

image-based 

rendering, 

Interactive image-

based rendering. 

[87] 

CMOS 

(OV7620) 

3 2 0 x 2 4 0 30fps 

6 4 0 x 4 8 0 13.5fps 

(block size 4) 

3 x 2 demo array. 

Distance between 

cameras not available 

but farther apart than 

others. Embedded 

microprocessor 

board, MPEG-2 

video encoder, 

lEEEl 394 interface 

t o U i t r a l 6 0 S C S I 

disk drives. 

Images divided into 

meshes and are 

warped and blended 

using dense 

disparity map. 

Camera's color 

reproduction by 

calibrafion matrices. 

MPEG-2 compress

ion (5 Mbytes /sec 

per video). 

Stream to host 

PC's SCSI 

hard drive. 

3D movie for large 

environment. 
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Fig. 13.23. Snapshots of (Top) (a) synthetic PV "synthesis" and (b) real-scene "Dance"; (Mid
dle) the IBR objects (c) "Ball" and (d) "Dancer" extracted; (Bottom) the depth maps of the 
synthetic PVs (e) "Ball" and (f) the IBR object "Dancer." 

13.4 Object-based compression of plenoptic videos 

As mentioned earlier in Section 12.3.2, the object-based approach to light fields of
fers many desirable features such as better rendering quality and object-based func
tionalities. In this section, the problem of object-based compression of the plenoptic 
videos will be described. We shall base our discussion on the work in [327]. 

To extract these IBR objects, a semi-automatic segmentation tool such as Lazy 
Snapping in [165] can be employed to provide an initial segmentation of the objects 
in a few light field images. Object tracking algorithms such as the level-set methods 
described in Section 12.3.4 can then be used to segment the objects in adjacent light 
field images and subsequent time instants. Figure 13.23 shows several snapshots 
from two plenoptic videos and the IBR objects segmented from the scenes. Figure 
13.23(a) shows a synthetic sequence called Synthesis, while Figure 13.23(b) is a real-
scene PV called "Dance." The "Ball" and the "Dancer" in the scenes are segmented 
to form two IBR objects as shown in Figures 13.23(c) and (d). 

Because of the similarity of the object-based plenoptic videos to traditional 
object-based coding in the MPEG-4 standard, it is natural to develop a MPEG-4 like 
object-based algorithm for compressing the video texture associated with the alpha 
maps, shape, and depth maps of the IBR objects [327]. The major difference between 
the two coding schemes is that: the IBR objects in the light fields and the plenoptic 
videos, and in general IBR compression, have to incorporate other important infor
mation such as additional geometry information in the form of depth maps and alpha 
maps, etc, to facilitate their rendering. As a result, under the object-based framework, 
multiple video streams in the plenoptic videos can be encoded into user-defined IBR 
objects, and flexibly reconstructed at the decoder for display and rendering at either 
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Fig. 13.24. Generic codec structure of the object-based compression system for plenoptic 
videos. 

the object level or frame level. We now describe the compression algorithm proposed 
in [327]. 

13.4.1 System overview 

Once the IBR objects have been identified, defined, and then extracted from the 
plenoptic videos (e.g., the objects "Ball" from the PVs Synthesis in Figure 13.23), 
they can be compressed individually to provide functionalities such as scalability of 
contents, error resilience, and interactivity with individual IBR objects. For exam
ple, different IBR objects might be given different numbers of bits (and different 
amounts of channel coding) and hence different reconstruction qualities (error re
silience). They might also be transmitted at different frame rates to achieve object 
scalability. Figure 13.24 shows the generic codec structure of the object-based cod
ing system in [327], which shares many useful concepts with the MPEG-4 video ob
ject coding. A video object (VO) includes the video object planes (VOPs) distributed 
in all the streams involved in the plenoptic videos, each containing its corresponding 
binary shape mask, grayscale shape map (alpha map) and depth map. Each VOP is 
then encoded based on its shape and motion. The scene and VO/VOP descriptors 
for the plenoptic videos are also encoded and multiplexed together with the VOPs, 
which are used to compose the video scenes at the decoder. Via the channels of the 
networks, the decoder can demultiplex and decode the VOPs for display or render
ing. Of course, the reconstructed VOPs can also be further composed into a frame 
for presentation and other operations. 

Figure 13.25 shows the encoder diagram of a VOP in an IBR object. It consists of 
four major components: texture coding, binary shape coding, grayscale shape coding 
and depth map coding. Texture coding is performed using Discrete Cosine Transform 
(DCT) based on motion prediction and compensation. The binary shape mask of 
the VOP is encoded using context-based arithmetic encoding (CAE) algorithm [18]. 
Grayscale shape information (alpha map), defined by an eight-bits number, is useful 
in matting VOs during VO composition and rendering at the decoder. Following 
MPEG-4, grayscale shape information (alpha map) is coded through alpha channels 



292 Image-Based Rendering 

VOP input 
1+ . 

1 T 

^ 

Coding/decoding 

Coded Reference VOP 

1 
^ 

• 

Texture 

coding 

Motion estimation /compensation 

> 
Binary shape coding 

Grayscale shape coding 

Depth coding 
i— 

Texture 

\ Motion 

Shape 

Grayscale shape 

Depth 

VOP 

multiplexing 

Output bits 

Fig. 13.25. Block diagram for encoding a VOP. 

FMP : Forward Motion Prediction 
BMP : Bacltward Motion Prediction 

SP: Spatial Prediction 

f j , : Video Object (VO) 

H : Macroblock 

I : l-VOP 
P : P-VOP 

Fig. 13.26. The texture coding of an IBR object in the plenoptic videos. 

in the same way as the luminance signal of texture. Each depth map, as a type of 
geometrical information, is encoded independently as a so-called "depth channel" 
in the object-based coding system. After these four parts are encoded, they are then 
multiplexed together as an entire encoded VOP. In the following, the details of the 
texture coding, binary shape coding and depth coding of VOPs will be described. 

13.4.2 Texture coding 

Because of disparity, adjacent light field images appear to be shifted relative to each 
other. Therefore, it is advantageous to employ both temporal or spatial predictions 
(also referred to as disparity compensated prediction (DC?)) to improve the cod-
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ing efficiency as in traditional stereoscopic image coding [174] and coding of other 
image-based representations. 

Figure 13.26 shows the block diagram for coding the texture of an IBR object 
in the object-based compression method in [327]. This is a generalization of the 
frame-based method in Section 13.3.3 and [35, 36] to the object-based framework. 
Likewise, it employs predictions in both the temporal and spatial directions. For 
simplicity only three video object (VO) streams are shown, and it is referred to as a 
group of video object field (GOVOF). In each VO stream, we have a view of the IBR 
object, which we refer to as the video object plane (VOP) as mentioned previously. 
There are two types of VO streams associated with each dynamic IBR object: main 
video object stream and secondary video object stream. Each main VO stream is en
coded similar to the MPEG-4 algorithm, which can be decoded without reference to 
other VO streams. For better performance, bi-directional prediction for the B-VOPs 
are employed. To provide random access to individual VOP, the basic structure of a 
Group of VOP (GVOP) in MPEG-4 is employed in the main VO stream. A GVOP 
contains an /-VOP and possibly F-VOPs and/or B-VOPs between this /-VOP and the 
following /-VOP. /-VOPs are coded using intra-frame coding to provide a random 
access point without reference to any other VOPs, while P-VOPs are coded by mo
tion predictive coding using previous /- or /'-VOPs as references. 5-VOPs are coded 
by a similar method except that forward and backward motion compensations are 
performed by using nearby /- or P-VOPs as references, which are indicated by the 
block arrow in Figure 13.26. The VOPs captured at the same time instant as the /-
VOP in a main stream constitute an /-VOP field. Similarly, the P- and B-VOP fields 
are defined as the VOP field containing respectively the P- and /?-VOPs of the main 
VO stream. A VOP from the secondary stream in the /-VOP field are encoded using 
disparity-compensated prediction (DCP) or "spatial prediction" from the reference /-
VOP in the /-VOP field. As mentioned earlier, the disparity-compensated prediction 
has been used in the coding of static light fields. Therefore, the coding algorithm 
considered here can be viewed as their generalization to the dynamic IBR object 
context. Similarly, apart from using temporal prediction in the same stream, the sec
ondary P/B-VOPs also employ spatial prediction from their adjacent P/S-VOPs in 
the main stream for better performance. 

It can be seen that employing spatial prediction for coding the secondary VO 
streams can achieve a better prediction in comparison to the main stream, which 
only employs temporal prediction, especially for VOs having fast motions. However, 
introducing spatial prediction also increases the overhead used in selecting the pre
diction modes, since one more prediction mode will result in one more entry in the 
codeword table for the entropy coding of MB prediction modes. According to the oc
currence probabilities of MB prediction modes, three codeword tables respectively 
for secondary /-VOPs, secondary P-VOPs, and secondary /?-VOPs are constructed 
in [327], while keeping unchanged the codeword tables for the VOPs of main stream. 
Experimental results show that the extra overheads of the new prediction modes is 
paid off by better prediction offered by spatial prediction. Finally, the blocks which 
lie within the object are coded similar to traditional video coders, while blocks at the 
boundary of an object can either be coded using padding or shape-adaptive DCT. 
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13.4.3 Shape coding 

Shape information is an important component in object-based coding. Following 
MPEG-4, there are two types of shape information: binary shape information and 
grayscale shape information. The former only provides the binary shape mask col
located with the luminance picture of the VOP, and it is used to indicate whether 
the pixels belong to that VOP or not. The latter one, also called the alpha map, pro
vides pixels' transparency levels for a VOP, which is useful to the matting of VOs 
during composition and rendering after being decoded. Binary shape information 
generally can be coded using Context-based Arithmetic Encoding (CAE) algorithm 
[18]. As discussed in a previous subsection, grayscale shape information is coded by 
using DCT, similar to the coding of luminance signal, via the alpha channel. Hence, 
shape coding mainly refers to coding binary shape information. There are two cod
ing modes in the CAE algorithm : Intra-CAE and Inter-CAE modes. The Intra-CAE 
mode codes shape information in intra mode, without using motion prediction, and 
therefore is mainly used for /-VOP in the main stream. In contrast, the inter-CAE 
mode makes use of motion prediction from a shape mask reference, and therefore it 
is used in other types of VOPs except /-VOP In coding a B-VOP in the main stream, 
the inter-CAE mode will select a shape mask in the nearest preceding /-VOP/P-VOP 
or future /-VOP//"-VOP as its reference in order to perform shape motion prediction 
and compensation. 

For the shape coding of a VOP in a secondary stream, it is possible to select the 
reference from either a VOP in this secondary stream or another in the main stream 
at the same time instant. In general, the shapes of the VOP in secondary streams are 
very similar to the VOP of the main stream at the same GOVOF, because they are 
captured by two cameras at the same time instance. As a result, selecting the VOP of 
the main stream as reference usually performs better than selecting the VOP in the 
same secondary stream. However, if the object is static, or moving very slowly, the 
shape motion prediction performed in the same secondary stream (i.e., intra stream 
mode) can achieve a better result than that performed between the secondary stream 
and the main stream (i.e., inter stream mode). To achieve a better shape coding result, 
both modes are incorporated. They are selected by performing the shape coding for 
each VOP in both modes, and the better one will be chosen. This method is referred 
to as the hybrid mode, and its improvement will be illustrated in Section 13.4.5. 

13.4.4 Depth coding 

In MPEG-4, alpha channels are provided to encode a set of grayscale shape infor
mation in the same way as the luminance component of textures. The depth map of 
a VO resembles closely the alpha information of a VO. Hence, it can be coded in a 
similar way as the alpha map, except for some pre-processing to be described below. 
Similar to "alpha channel," the data in the final encoded bitstream for storing the en
coded depth map are called the "depth channel". We now describe the pre-processing 
of the depth map for better coding performance. Firstly, since the dynamic range of 
the depth values can be quite large, it is advantageous to scale it appropriately before 
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(a) (b) 

Fig. 13.27. (a) Snapshots of the sequence "Poem" captured by the system in [327]. (b) 8-bit 
depth maps of a snapshot of this sequence. 

(a) 

Fig. 13.28. (a) Snapshots of the sequence "Dance" captured by the system in [327]. (b) 8-bit 
depth maps of a snapshot of this sequence. 

coding. Secondly, for a large object, its depth values might vary significantly, and 
the depth pixels with small values are commonly more important since they result in 
large disparity of image pixels in rendering the VO. To avoid introducing too much 
distortion in encoding depth pixels with small values after scaling, companding [129] 
is also applied to the depth map. A usual companding approach for coding depth val
ues is to calculate the reciprocal of a depth pixel value Z, where the companded 
value Z' is given by Z' = 1/Z. Taking into account the scaling and companding 
operations mentioned above, the final value of a depth pixel Zf, before feeding to 
the encoder, is given by: 

ry _ Z _ 1/Z __ Zmin q 

where Z'^ax is the maximum value of the companded depth maps, which also corre
sponds to Zmin^ the minimum depth values of the VOPs, and Smax is the maximum 
scaling value. If 8 bits is used to represent a pixel for encoding, then Smax would be 
255. Similarly, for 12 bits, Smax would be 4095. 

After companding and scaling of the original depth values, the resulting depth 
map is then encoded using temporal/spatial prediction, similar to its corresponding 
texture and alpha map. 

13.4.5 Compression results and performance 

Figures 13.27(a) and 13.28(a) show the snapshots of two sequences "Poem" and 
"Dance" captured by the system in [79]. The resolution of these videos is 720 x 
576. The "Poem" sequence represents a typical head and shoulder scene frequently 
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Fig. 13.29. Rendering results of the sequence "Poem" obtained by the algorithm in [327]. 

. f- iyiifcairi . . . 

Fig. 13.30. Rendering results of the sequence "Dance" obtained by the algorithm in [327]. 

encountered in 3D videophone, and the "Dance" sequence is an example of life per
formance and other sport events. The corresponding depth maps are shown in Figures 
13.27(b) and 13.28(b). Figures 13.29 and 13.30 show the rendering results obtained 
by the system. The rendering time for one frame of the "Poem" and "Dance" se
quences in a Pentium 4 2.46 Hz computer are 27.5 ms and 128.3 ms respectively. In 
other words, the rendering of object-based plenoptic videos is nearly real-time. 

The performance of the object-based coding scheme for the plenoptic video (PV) 
is illustrated using a synthetic and a real-scene PVs. The synthetic PV "Ball" is pro
duced by the 3D Studio IVIax software with a resolution of 320 x 240 pixels and 24-
bit RGB components per pixel. The real-scene PV "Dance" has a resolution of 720 
X 576 pixels in 24-bit RGB format. It was captured by the multiple video cameras 
system described in Section 12.3.5, which consists of two linear arrays of cameras 
each hosting 6 JVC DR-DVP9AH video cameras. The corresponding depth maps 
are generated with 16 bits per pixel. Figure 13.23 also shows a few snapshots of two 
PVs and two IBR objects extracted from the "Ball" and the "Dance" sequences. The 
"Ball" and "Dancer" have respectively 40 frames/VOPs and 50 frames/VOPs in each 
stream. Due to space limitation, snapshots for only 3 streams are shown in Figure 
13.23, despite that the "Ball" and "Dance" contain 9 and 6 streams, respectively. 
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Fig. 13.31. Object-based coding result for the IBR object "Ball.' 
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Fig. 13.32. Object-based coding result for the IBR object "Dancer' 

Figures 13.31 and 13.32 show the combined coding results with respect to the 
PSNR of the texture and shape coding for IBR objects "Ball" and "Dancer" at dif
ferent bit rates by using the VM rate control algorithm [124]. The frame rates used 
for the PVs are 24 frames per second. For illustration purposes, a Group of VOPs 
(GVOP) structure consisting of 12 VOPs (1 /-VOP, 3 P-VOPs and 8 S-VOPs) is em
ployed. The curves denoted by "MPEG-4" represent the results using MPEG-4-like 
algorithm without spatial prediction, while those denoted by "SP-3," "SP-5," and 
"SP-7" represent the coding results using the coding scheme with 3, 5 and 7 VO 
streams within a GOVOF, respectively. It can be seen from Figure 13.31 that, for the 
synthetic IBR object "Ball," there is a considerable improvement in PSNR perfor-
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Fig. 13.33. Typical rendering results for the IBR object "Ball." 
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Fig. 13.34. Typical rendering results for the IBR object "Dancer." 

mance (4 dB) of the object-based coding scheme over the direct application of the 
MPEG-4 algorithm to individual VO stream. The coding performances of SP-5 and 
SP-7 are slightly better than that of SP-3, while the former two are very close to each 
other. This is to be expected because when the disparity between two video streams 
increases, spatial prediction becomes less effective. The performance improvement 
for the real-scene IBR object "Dancer," as shown in Figure 13.32, is less signifi
cant compared with the synthetic sequence. This is mainly due to the slight position 
errors introduced by imperfect camera calibration, which destroys somewhat the cor
relation between the video streams. Therefore, the results for SP-3 and SP-5 are very 
close to each other. 

Table 13.5 compares the shape coding results produced in different types of pre
diction modes for different VO streams extracted from the synthetic PVs Synthesis 
(Figure 13.23). It is measured by the average number of bits used per VOP. Stream 
2 is the main stream, and others are the secondary streams. The object "Ball" has a 
lot of motion, whereas the object "Pyramid" is static and the object "Green Hose" 
moves very slowly. From Table 13.5, we can see that stream 1 and stream 3 have bet
ter shape coding results than stream 0 and stream 4. This is because the disparity of 
the formers with respect to the main stream is much smaller than those of the latters. 
It can be seen that the hybrid mode achieves the best performance than using intra 
or inter stream mode alone. Since the variations in the depth map within the IBR 
object is much less than the texture information, the depth map can be coded with a 
higher compression ratio than the latter. The rendering examples displayed in Figure 
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13.33 are rendered using the reconstructed depth maps, where the average compres
sion ratio of the depth map for the IBR object "Ball" is about 500 at a PSNR of 40 
dB. Finally, to further demonstrate the object-based functionality of the codec, the 
renderings from the real-scene PV "Dance" at both the frame and the object levels 
are also shown in Figure 13.34. In closing, we note that the performance of the sys
tem can be further improved if more tools of MPEG-4 such as four motion vectors 
for a MB, direct prediction mode and so forth are incorporated in coding the sec
ondary VO streams. Moreover, it would be valuable to incorporate other advanced 
coding tools in the recently introduced H.264 standard into the compression scheme 
for better coding performance. These will be a fruitful area of future work. 

Table 13.5. Comparison of binary shape coding results using different shape prediction modes 
[327]. 

VO 
Ball 

Hose 

Pyramid 

Stream name 
Stream 1/3 
Stream 0/4 
Stream 1/3 
Stream 0/4 
Stream 1/3 
Stream 0/4 

Shape prediction mode (bits/VOP) 
Intra mode Inter mode Hybrid mode 

409 
407 
388 
405 
143 
148 

287 
307 
351 
368 
356 
401 

287 
307 
344 
359 
143 
148 

13.5 Future directions and challenges 

Tables 13.6 and 13.7 summarize the various IBR compression methods described 
earlier. Despite the significant progress achieved in IBR compression over the last 
few years, many research problems still remain. We envision that the data compres
sion and transmission of the various image-based representations described in this 
paper and related representations (such as the compression of LDIs [68]) will con
tinue to be important issues in IBR research. For example, the integration of model-
based coding with traditional video coding approaches for light field compression 
[85, 180, 181] is an interesting area of research. 

Methods for capturing, compression, and transmission of dynamic IBR functions 
have not been well explored yet. The panoramic video, as discussed earlier, is a 3D 
dynamic image-based representation that is relatively simple to manipulate. As a re
sult, this representation will be easier to use in a commercial setting. Dynamic gener
alizations of the light field and Lumigraph, which we called the plenoptic video, will 
likely involve scores of synchronized videos for them to be effective and compelling. 
It would be very challenging to efficiently compress and transmit them. The proto
type systems described in this chapter demonstrate the feasibility and the potential 
applications of IBR in immersive TV and other related applications. 
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Table 13.6. Summary of IBR compression techniques for static scenes. Note: DCP = dispar
ity compensation prediction, VQ = vector quantization, MRFP = multiple reference frame 
prediction, MB = macroblock, C.R. Compression ratio. 

STATIC SCENES (Concentric Mosaics: Random access at line level) 
References 
[267] 
[150,230] 

[268] 

RBC 
[164, 340] 
[175, 328, 329] 

Method 
VQ 
Haar wavelet 
decomp. and 
thresholding 
Modified MPEG-2 

Modified MPEG-2 

Wavelet 

Random access 
Simple 
Tree of wavelet 
coeffs. to speedup 
data access 
Pointer to 
line of MB 
Simple (pointer) 

Complicated 

C.R. 
Low 
Moderate 

High 

High 

High 

Remarks 
Simple, fast rendering 
Scalable bit stream 

Real-time rendering 

Real-time cache to 
enhance speed 
Less rendering speed. 
Real-time with cache 
enhancement [328]. 
Good compression 
efficiency using 
smart rebinning [329]. 

STATIC SCENES (Light Field: Random 
References 
[160] 
HDCP [298] 
V-coder 
[177, 179] 
D-coder 
[178, 179] 

RBC 
[164,341] 

Model-aided 
coder 
(MAC) [180] 
Model-based 
coder 
(MBC)[181] 

Method 
VQ 
DCP, VQ 
DCP, DCT-
based coding 
HDCP using 
disparity map. 
DCT-based coding 
Modified MPEG-2, 
MRFP 

Approx. 3D 
geometry model 
and DCP 
Use scene geometry 
to convert images to 
texture maps, which 
are coded using a 
modified SPIHT 
algorithm [250] 

Random access 
Simple 
Pointer to regions 
Complicated 

Complicated 

2-level 
index table 

Complicated 

Random access 
to arbitrary 
texture 
segments 

access at pixel level) 
C.R. 
Low 
High 
High 

Slightly 
inferior 
to V-coder 
High 

Better 
than 
MBC 
High 

Remarks 
Simple, fast rendering 
Simple, fast rendering 

Possible to interpolate 
intermediate missing 
picture 
Real-time rendering. 
Also for Lumigraph 
compression. 
Significant overheads 
of indexing at high 
compression ratio. 

Supports progressive 
decoding. Graphics 
hardware can be 
used to accelerate 
rendering. 
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Table 13.7. Summary of IBR compression techniques for dynamic scenes. Note: DCP = dis
parity compensation prediction, MB = macroblock, C.R. Compression ratio. 

DYNAMIC SCENES (Panoramic Video: Random access at tile level) 
Reference 
[211] 

Method 
Modified MPEG-2 

Random access 
B-piclures in 
MPEG-2, 
pointers to tiles 

C.R. 
High 

Remarks 
Panoramas divided 
into tiles for selective 
decoding and reception 

DYNAMIC SCENES (Simplified Dynamic Light Field: Random access at line level) 
Reference 
[35] 

[327] 

Method 
Modified 
MPEG-2, DCP 
Modified 
MPEG-4 

Random access 
Pointers to 
line of MB 
Pointers to 
line of MB 

C.R. 
High 

High 

Remarks 

Object-based 
approach 

We predict that future virtual reality and gaming systems will rely heavily on 
image-based representations to render photo-realistic real-world scenes. Realistic-
looking synthetic scenes that are expensive to render may be prerendered instead 
and stored as image-based representations in such systems as well. However, before 
such systems become a reality, the high level of interactivity associated with 3D 
gaming will have to be enabled. This is a challenging and interesting topic that will 
need to be adequately addressed. 

In addition, the amount of digital data associated with future image-based rep
resentations will become so large that selective decoding, reception, and streaming 
techniques for transmission will continue to play a major role in their processing. 
This again calls for sophisticated random access methodology to retrieve these com
ponents with a wide range of characteristics. 



Part IV 

Systems and Applications 

In the last part of the book, we detail four systems that acquire and render scenes 
using different types of representations. The representations featured in this part are 
geometryless (Chapters 14 and 17), with geometric proxies (Chapter 15), and layers 
(Chapter 16). 

Chapter 14 (Rendering by Manifold Hopping) shows how manifold mosaics or 
multiperspective panoramas can be made more compact. This is accomplished by us
ing the simple observation that humans perceive motion as continuous if the change 
in scene is small enough. By capitalizing on this observation, the minimal number of 
sampled manifolds can be derived; the scene is then rendered by "hopping" across 
manifolds. No explicit geometry is used. 

Constructing an image-based representation of large environments would, in 
principle, require a massive amount of image data to be captured. However, we can 
usually make the reasonable assumption that some parts of the environment are more 
interesting than others. Areas of higher interest would then be captured using more 
images and afforded higher degrees of freedom in (local) navigation. Chapter 15 
(Large Environment Rendering using Plenoptic Primitives) describes an authoring 
and rendering system that generates a combination of panoramic videos and Con
centric Mosaics (CMs). CMs are placed in areas of more significant interest, and 
they are connected by panoramic videos. 

Chapter 16 (Pop-Up Light Field: An Interactive Image-Based Modeling and Ren
dering System) shows how a layered-based representation can be extracted from a 
series of images. The key is to allow the user indicate areas where artifacts occur. 
Alpha matting at the layer boundaries and highlighted areas are then estimated to en
sure coherence across the images and artifact-free rendering. Hardware-accelerated 
rendering ensures that the editing process is truly interactive. 

One characteristic of a light field is that it is difficult to edit and manipulate. This 
limits the appeal of light fields. Chapter 17 (Feature-Based Light Field Morphing) 
describes an interactive system that allows users to morph one light field into another 
using a series of simple feature associations. This technique preserves the capability 



304 Image-Based Rendering 

of light fields to render complicated scenes (e.g., non-Lambertian or furry objects) 
duritig the morphing process. 

Additional Notes on Chapters 

Chapter 14 (Rendering by Manifold Hopping) has appeared in International Journal 
of Computer Vision (IJCV), volume 50, number 2, pages 185-201, November 2002. 
The article was co-authored by Heung-Yeung Shum, Lifeng Wang, Jin-Xiang Chai, 
and Xin Tong. 

Most of Chapter 15 (Large Environment Rendering using Plenoptic Primitives) 
has appeared in IEEE Transactions on Circuits and Systems for Video Technology, 
volume 13, number 11, November 2003, pages 1064-1073. The co-authors of this 
article are Sing Bing Kang, Mingsheng Wu, Yin Li, and Heung-Yeung Shum. 

Heung-Yeung Shum, Jian Sun, Shuntaro Yamazaki, Yin Li, and Chi-Keung Tang 
originally co-wrote the article "Pop-Up Light Field: An Interactive Image-Based 
Modeling and Rendering System," which appeared in ACM Transaction on Graph
ics, volume 23, issue 2, April 2004, pages 143-162. Chapter 16 is an adaptation of 
this article. 

Finally, Chapter 17 (Feature-Based Light Field Morphing) first appeared as an ar
ticle in ACM SIGGRAPH, July 2002, pages 457-464. The co-authors are Zhunping 
Zhang, Lifeng Wang, Baining Guo, and Heung-Yeung Shum. 



14 

Rendering by Manifold Hopping 

In Chapter 2, we surveyed image-based representations that do not require ex
plicit scene reconstruction or geometry. Recall that representations such as the light 
field [1601, Lumigraph [91], and Concentric Mosaics (CMs) [267] densely sample 
rays in the space based on the plenoptic function [2] with reduced dimensionalities. 
They allow photorealistic visualization, but at the cost of a large database require
ment. 

An effective way to reduce the amount of data needed for IBR is to constrain 
the motion or the viewpoints of the rendering camera. For example, the movie-map 
system [170] and the QuickTime VR system [41] allow a user to explore a large 
environment only at pre-specified locations. Even though a continuous change in 
viewing directions at each node is allowed, these systems can only jump between 
two nodes that are far apart, thus causing visual discontinuity and discomfort to the 
user. However, perceived continuous camera movement is very important for a user 
to smoothly navigate in a virtual environment. Recently, several panoramic video 
systems have been built to provide a dynamic and immersive "video" experience by 
employing a large number of panoramic images. 

This chapter shows that it is possible to achieve significant data reduction, not 
through more sophisticated compression, but rather by strategically subsampling. 
This is shown in the context of CMs, which is made up of densely sampled cylin
drical manifold mosaics. By strategically sampling a small number of cylindrical 
manifold mosaics, it is still possible to produce perceptually continuous navigation; 
the resulting rendering technique is called manifold hopping. The term manifold hop
ping is used to indicate that while motion is continuous within a manifold, motion 
between manifolds is discrete, as shown in Figure 14.1. 

Manifold hopping has two modes of navigation: moving continuously along any 
manifold, and discretely between manifolds. An important feature of manifold hop
ping is that significant data reduction can be achieved without sacrificing output vi
sual fidelity, by carefully adjusting the hopping intervals. A novel view along the 
manifold is rendered by locally warping a single manifold mosaic using a constant 
depth assumption, without the need for accurate depth or feature correspondence. 
The rendering errors caused by manifold hopping can be analyzed in the signed 
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Hough ray space. Experiments with real data demonstrate that the user can navigate 
smoothly in a virtual environment with as little as 88fc data compressed from 11 
cylindrical manifold mosaics. 

Manifold hopping significantly reduces the amount of input data without sacrific
ing output visual quality, by employing only a small number of strategically sampled 
manifold mosaics. This technique is based on the observation that, for human vi
sual systems to perceive continuous motion, it is not essential to render novel views 
at infinitesimal steps. Moreover, manifold hopping does not require accurate depth 
information or correspondence between images. At any point on a given manifold, 
a novel view is generated by locally warping the manifold mosaic with a constant 
depth assumption, rather than interpolating from two or more mosaics. Although 
warping errors are inevitable because the true geometry is unknown, local warping 
does not introduce structural features such as double images which can be visually 
disturbing. 

14.1 Preliminaries 

In this section, we describe view interpolation using manifold mosaics, warping man
ifold mosaics, and manifold hopping. Throughout this section, CMs are used as ex
amples of manifold mosaics to illustrate these concepts. (The notion of manifold 
mosaic has been covered in Chapter 2; the reader is encouraged to review the chapter 
before proceeding.) 

14.1.1 Warping manifold mosaics 

High quality view interpolation is possible when the sampling rate is higher than 
Nyquist frequency for plenoptic function reconstruction [33] (see also Chapter 5). 
However, if the sampling interval between successive camera locations is too large, 
view interpolation results in aliasing artifacts. More specifically, double images are 
observed in the rendered image. Such artifacts can be reduced by the use of geometric 
information (e.g., [91, 33]) or by pre-filtering the light fields [160, 33], thus reducing 
output resolution. 

A different approach is to locally warp manifold mosaics, which is similar to 
3D warping of a perspective image. An example of locally warping CMs using an 
assumed constant depth is illustrated in Figure 2.8(b). Any rendering ray that is not 
directly available from a CM (i.e., not tangent to a concentric circle) can be retrieved 
by first projecting it to the constant depth surface, and then re-projecting it to the 
CM. Therefore, a novel view image can be warped using the local rays captured on 
a single Concentric Mosaic, rather than interpolated by collecting rays from two or 
more CMs. 

According to Zorin and Barr [353], for humans to perceive a picture correctly, 
it is essential that the retinal projection of a two-dimensional image of an object 
should not contain any structural features that are not present in the object itself. In 
contrast, human beings have a much larger degree of tolerance for other important 
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Fig. 14.1. Manifold hopping using Concentric Mosaics (CMs): a plan view. Manifold hop
ping has two modes of navigation: (a)(c) move continuously along any manifold, and (b)(d) 
discretely across manifolds. The arrows in (b)(d) indicate that the user can only hop to the 
viewpoints on the circle, but not stop anywhere in between. Two classes of manifold hop
ping are shown here: lateral hopping whose discrete mode of navigation is perpendicular to 
the viewing direction, and looming hopping whose discrete mode of navigation is along the 
viewing direction. Lateral hopping uses tangent CMs (Figure 2.6(a)), while looming hopping 
employs normal CMs (Figure 2.6(b)). Note that the rendering views are restricted on the cir
cles. Rendering images have limited field of views. 
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Fig. 14.2. Local warping with an assumed constant depth: (a) part of a Concentric Mosaic; (b) 
a rendered view with FOV = 45; and (c) another rendered view with FOV = 90. The distortion 
error towards the right edge of (c) can be clearly seen as straight lines become curved. The 
image is rendered column by column with local warping. Note that in (c), the vertical field of 
view is significantly reduced as some of the ceiling lights become invisible. 

requirements for the perception of pictures, including the direct view condition, fore
shortening of objects, relative size of objects, and verticality. Double images, vv-hich 
are common artifacts from view interpolation with poor correspondence, unfortu
nately result in mistakenly perceived structural features in the observed objects, e.g., 
more noticeable edges. This leads to uncomfortable visual perception. 

On the other hand, locally warping a multiperspective image preserves structural 
features. Even though the local warping method, similar to classical 3D warping 
methods, introduces geometric distortions because of imprecise geometric informa
tion, the amount of geometry distortion can be tolerated by human visual percep
tion as long as the field of view (FOV) of the rendering image is small. Consistent 
re-projection errors appear less disturbing than perceived structural changes to hu
man beings. A single multiperspective panorama, for instance, has been widely used 
in eel animation to generate novel view images by projecting the multiperspective 
panorama to perspective images [324]. 

An example of locally warping a CM is shown in Figure 14.2, with images of dif
ferent FOV's. The projection error in the rendered image caused by warping the CM 
with (incorrect) constant depth assumption increases as the field of view becomes 
larger. Note the distortion toward the right edge in Figure 14.2(b). The geometric 
distortions introduced by local warping methods because of imprecise geometric in
formation are, however, tolerated by human visual perception when the field of view 
(FOV) of the rendering image is small (e.g.. Figure 14.2(a)). 

14.1.2 Hopping classification and issues 

We now introduce the idea of manifold hopping using a small number of CMs to ob
serve an environment from the inside looking out. Manifold hopping has two modes 
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of navigation: moving continuously along any of the concentric circles as shown in 
Figure 14.1(a) and (c), but discretely along the radial direction as in Figure 14.1(b) 
and (d). 

Manifold hopping works because moving continuously along any concentric cir
cle uses local warping, which preserves structural features. In addition, moving dis
cretely along the radial direction can be made perceptually smooth if the interval can 
be made reasonably small. A key observation is that there exists a critical hopping 
interval for users to perceive a smooth navigation. In other words, manifold hop
ping is able to provide users with perceived continuous camera movement, without 
continuously rendering viewpoints at infinitesimal steps. As a result, manifold hop
ping significantly reduces the input data size without accurate depth information or 
correspondence. 

Figure 14.1(a) also shows that, at any point on a circle, the rendering view is 
constrained to be on the circle and the viewing direction along the tangent line to 
minimize the rendering errors caused by local warping. Note that no parallax is ob
served from these views generated on the same circle using the same CM. Parallax 
and lighting changes are captured in manifold hopping because of the viewpoint 
variations across different concentric circles, as shown in Figure 14.1(b). 

There are two types of manifold hopping with CMs: lateral hopping, whose dis
crete mode of navigation (Figure 14.1(b)) is perpendicular to the viewing direction; 
and looming hopping, whose discrete mode of navigation (Figure 14.1(d)) is along 
the viewing direction. Note that for each type of hopping, there are two modes of nav
igation, namely the continuous mode along the manifold and discrete mode between 
manifolds. The type of hopping is named after the direction of discrete navigation. 

Detailed analysis of manifold hopping is needed to address the following impor
tant questions. 

• What is the largest field of view that still produces acceptable local warping er
ror? 

• How large can the hopping interval be so that continuous motion can be per
ceived? 

Before addressing these questions, we first introduce the idea of the signed 
Hough ray space. The signed Hough ray space is important for the analysis of hop
ping. 

14.2 The signed Hough ray space 

The Hough transform is known to be a good representation for lines. However, it 
is not suitable for representing rays that are directional. The conventional Hough 
space can be augmented to a signed Hough ray space [31], or an oriented line rep
resentation [160], by using the following right-hand rule: a ray that is directed in a 
counter-clockwise fashion about the coordinate center is labeled positive, otherwise 
is labeled negative. A "positive" ray is represented by (r, 0), whereas its "negative" 
counterpart is (—r, 6) where r is always a positive number. Figure 14.3 shows four 
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Fig. 14.3. Definition of the signed Hough ray space: each oriented ray in Cartesian space at 
the left is represented by a sampled point in the signed Hough space on the right. 
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Fig. 14.4. Three typical viewing setups and their respective sampled curves in the signed 
Hough space: (a) a panorama at a fixed point; (b) a Concentric Mosaic (CM); (c) a parallel 
projection mosaic; and (d) their respective sampled curves in the signed Hough space. Two 
CMs (straight lines at ro and —ro) are shown in (d) to represent rays captured at opposite 
directions along the circle. Note that a perspective image is only part of a panorama, thus 
represented by a segment of a sinusoidal curve in the signed Hough space. 
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different rays in a 2D space and tlieir corresponding points in the signed Hough 
space. 
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Fig. 14.5. Hopping between CMs along a radial direction in the signed Hough space. Contin
uous rotation is achieved along any of the concentric circles, but hopping is necessary across 
any radial direction. In radial hopping, the curve segment varies from r„ to r„+i because the 
corresponding sine curve is different, as shown in Figure 6. 

Fig. 14.6. Analysis of hopping size: horizontal parallax change due to viewpoint change. 
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Fig. 14.7. Analysis of maximum FOV: warping error due to the incorrect depth value. 

Figure 14.4 shows three typical viewing setups and their representations in the 
signed Hough space. For example, a panoramic image (i.e., rays collected at a fixed 
viewpoint in Cartesian space) is represented as a sampled sinusoidal curve in the 
parameter space, located at (ro,^o) as shown in Figure 14.4(a). A CM shown in 
Figure 14.4(b) is mapped to a horizontal line, whereas parallel projection rays (Fig
ure 14.4(c)) are mapped to a vertical line in the signed Hough space. Thus, captured 
perspective images can be easily transformed into samples in the parameter space. 
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Rendering a novel view in the scene is equivalent to extracting a partial or complete 
sinusoidal curve from the signed Hough space. 

14.3 Analysis of lateral hopping 

When the hopping direction is perpendicular to the viewing direction, as shown in 
Figure 14.1, it is called lateral hopping. In the signed Hough space, such a hopping 
is illustrated in Figure 14.5 where a segment of a sinusoidal curve is approximated 
by a line segment. Equivalently, at each rendering viewpoint, a perspective image is 
approximated by part of a CM. 

Obviously, the smaller the hopping interval, the smaller the rendering error. On 
the other hand, the larger the hopping interval, the less data needed for wandering 
around an environment. It is possible to have a fairly large hopping interval for man
ifold hopping and still allow the rendering to be perceptually acceptable. 

14.3.1 Local warping 

When moving on a CM, the horizontal field of view should be constrained within a 
certain range so that the distortion error introduced in local warping from a multiper-
spective image to a perspective image will not cause much visual discomfort to the 
user. 

The distortion threshold % is defined as the maximum allowable distance be
tween point A and point B in Figure 14.7. These two points are projections of the 
rightmost pixel that are locally warped with distance Ri (assumed distance) and i?2 
(corrected distance), respectively. A radial hopping camera must satisfy the follow
ing: 

Ae = 9B-eA<m, (w.i) 
where OB = sin~^ ^ — sin"'^ ''"^ is the angular difference when the object at i?2 
distance viewed along circles of r„ and r„ — Ar. 6A is defined similarly for object 
located at R\. Thus, 

• -\ f'n . -I I'n ~ Ar . _i r„ . _i r,i — Ar /IA ^\ 
sm •—- - sm sm —- -|- sm < % (14.2) 

K 2 jft2 J t l J t l 

If parallel interpolation is applied to local warping by assuming the depth Ri at 
infinity, we can simplify the above constraint to 

1 f'n 1 r^ — Ar 
sin-i - f - sin-i - ^ < 77d (14.3) 

, Fov, Ar 
l - c o s ( - — ) = — (14.4) 

From the above two equations, we can derive the maximum FOV under parallel 
interpolation as 
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FOV I R2 
c o s ( ^ — ) > COS r]d - \ {— y - 1 sin r]d (14.5) 

2 V rn 

The above equation shows that, under parallel interpolation, the maximum FOV 
for a hopping camera depends on the radius of the Concentric Mosaic, the scene 
depth, and the distortion error threshold. The field of view can be significantly in
creased when the object moves farther away. A smaller radius enables a larger FOV. 
For example, a panorama with a very large FOV can be rendered as the radius goes to 
zero. In addition, warping with constant depth (rather than infinite depth) can further 
increase the maximum FOV. 

Consider a scene that is located along a circle whose radius is four times that of 
the outermost CM. If the distortion threshold is assumed to be 1° (that is a flow of 5 
pixels for a mosaic with width 1800), the maximum allowable FOV is 42.42°. 

Fortunately human visual perception does not require a very large field of view 
for a hopping camera when wandering in a virtual environment. It has also been 
shown that 36° is close to perceptually optimal for most people [353]. It is well 
known that small FOV perspective images are generated from a large multiperspec-
tive panorama for the purpose of animation [324]. 

14.3.2 Hopping interval 

The efficiency and effectiveness of hopping depend on the size of sample intervals 
along both the radial and angular directions. The angular direction is sampled uni
formly and densely to ensure a continuous rotation. The maximum hopping interval 
Ar allowed for smooth visual perception is determined by the threshold of the hori
zontal pixel flow Do (in angular measurement) between two neighboring frames. The 
analysis of vertical parallax is ignored due to the nearly horizontal epipolar geometry 
between neighboring CMs. 

Suppose that a point at a distance RQ is seen in two CMs 7-„ and r„+i, respec
tively. As shown in Figure 14.6, the horizontal parallax A9 between two observed 
pixels A and B at the two CMs satisfies 

A0 = sm-\^-^^±^) - sin-i(^) < Do (14.6) 
K o JrCo 

which leads to the maximum hopping size 

Ar ^ ^^R'^~rl sin Do + r„ cos DQ - r„ (14.7) 

= i?osin(Do + sin"i ^ ) - r„. (14.8) 

The above equation reveals that the sample interval along the radial direcfion 
depends on the depth (RQ), the smooth perception threshold (Do), and the radius 
(r„) of the CM. Specifically: 

• Sampling along the radial direction is nonlinear. The smaller the radius, the larger 
the hopping intervals should be . 
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• The hopping interval can be increased with object distance. When objects are 
located at infinity, all CMs degenerate to the same panorama. 

• A larger threshold DQ allows for a larger hopping interval along the radial direc
tion. As Ar -^ 0, the hopping interval DQ —> 0. This is equivalent to rendering 
with CMs [267]. On the other hand, if it is not required to observe parallax, a 
single manifold mosaic is enough for a user to look at any viewing direction. 

The choice of threshold DQ is closely related to the human visual system. It is 
well known that, for a human to observe smoothly moving pictures, the frame rate 
is 24 fps. Suppose that the average speed of rotation for a person to observe an 
environment is below 48°/second, then Do should be 2°. In other words, a person 
can tolerate 2° of average pixel flow for two neighboring frames and still observe 
smooth and continuous motion. 

Consider a particular scene in which the radius of the outermost CM is 1 unit 
and the objects are located at a distance of 4 units. If DQ is 1.5°, we have Ar = 0.1. 
Therefore, only 21 Concentric Mosaics are required (two for each concentric circle 
and one for the center). This is a significant reduction from 320 rebinned CMs needed 
in rendering with CMs [267]. 

14.4 Analysis of looming hopping using extended signed Hough 
space 

In the previous section, we have analyzed manifold hopping where the hopping di
rection is perpendicular to the viewing direction. If the hopping direction is along 
the viewing direction, i.e., if the user moves forward and backward, the conven
tional CMs assembled by rays along the tangent lines of the concentric circle cannot 
be used. Instead, hopping with a looming motion can be achieved if we construct 
normal CMs that are formed by slit images with unit pixel width along the normal 
directions of the concentric circle, as shown in Figure 2.6(b). A novel view at any 
point on a circle can be rendered by locally warping rays from the normal CM near 
the viewpoint, as shown in Figure 14.1(c). 

The signed ray space is no longer adequate for analyzing looming hopping. For a 
looming motion, points along the same ray need to be represented differently based 
on direction. The extended signed Hough space is used to account for direction. It is 
defined by a 3-tuple (r, 9, d), where d is the distance from the origin to the location 
where the ray is captured. Two points (P and P') along the same ray have identical 
(r, 0) but different values of d, as shown in Figure 14.8. Also, d will take the same 
sign as r to differentiate a "positive" ray from a "negative" one, similar to the signed 
Hough space. Although rays captured at P and P' are the same in the plan view of 
Figure 2.6(b), slit images captured at these two points are different. 

Figure 14.8 also shows three different mosaics represented in the extended 
Hough space. 

• A panorama: r = dsm{6 — </)); 
• A tangent CM: r = d = Vn, 
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r = d sin(6' - (p) d = r = r, r = 0,d = r. 

Ay 
k,. 

(a) (b) (c) (d) 
Fig. 14.8. (a) The extended signed Hough ray space is defined by three parameters (r, 0, d). 
Different points on the same ray have different d values. (b)(c)(d) A panorama, a tangent CM, 
and a normal CM are represented in the extended signed Hough space. 

• A normal CM: r = 0 and d = r„. 

Note that (p is the constant angle for the viewpoint, and Vn is the diameter of 
one of the concentric circles. It becomes evident now why the location of the ray, 
which was ignored in lateral hopping (in the signed Hough space), should be con
sidered in looming hopping because r is always zero under looming. Therefore, the 
(r, 9, d) representation is necessary and sufficient to index rays in 2D (plan view in 
Figure 2.6(b)) to capture the looming effect as the user moves forward and backward. 

Figure 14.9 illustrates looming hopping in the extended signed Hough space. 
Similar to lateral hopping in the signed Hough space (Figure 14.5), rendering a novel 
view in looming hopping is also equivalent to approximating a partial sinusoidal 
curve by a line segment of a normal CM. Unlike lateral hopping, however, each 
sinusoidal curve is constructed at a different d. For clarity, we skip the looming 
hopping interval analysis in the extended signed Hough space, which is similar to 
the analysis in the signed Hough space in the previous section. 

Lateral hopping is also illustrated in Figure 14.9. In the (r, 6, d) space, the plane 
for lateral hopping is r = d, but r = 0 for looming hopping. The sinusoidal curve 
segment is approximated around the maximum r in lateral hopping, and around r = 
0 for looming hopping. If we project the lateral hopping plane in (r, 9, d) space 
onto the rf = 0 plane, we obtain the (r, 6) counterpart for lateral hopping. There is 
therefore a duality between lateral hopping (r, 9) and looming hopping (d, 9). 

14.5 Outside looking in 

CMs are suitable for wandering around in an environment when a user is looking 
outwards. When the user is looking at an object, it is desirable to observe the object 
from outside at different viewing angles. In addition, the user may wish to view the 
object up close; the simplistic solution of simply zooming in will produce double 
images due to the effectively reduced resolution. 

For simplicity of analysis and data capture, camera motion is assumed to be on 
a plane as an object rotates in front of a camera. A sequence of perspective images 
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Fig. 14.9. Looming hopping with normal CMs, and lateral hopping with tangent CMs in the 
extended signed Hough space. Rendering a novel perspective view is equivalent to approxi
mating a sinusoidal curve segment by a straight line segment representing part of a CM. In 
looming hopping, green segments are used to approximate the sine curve at different d values 
on the brown r = 0 plane. In lateral hopping, black segments are used to approximate the sine 
curve at different r (and d) values on the blue r = d plane. 
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are then taken along the camera path (i.e., a circle). The rendering camera is also 
constrained to have continuous motion along the radial direction (moving towards 
and away from the object along a line) as shown in Figure 14.10(a), and discrete 
hopping motion in the angular direction as shown in Figure 14.10(b). 

14.5.1 Hopping between perspective images 

This rendering camera motion can be achieved by simply using the perspective im
ages captured in the original sequence. Assuming a constant depth for the object, we 
can reproject perspective images to any novel views along the radial direction. How
ever, only zooming effect, not the parallax effect, can be observed when the camera 
moves along the radial direction. When the camera moves away from the object, it is 
not possible to observe any additional part of the object around the boundary other 
than what is in the original image. 

14.5.1.1 Angular hopping interval 

Many previous systems have used multiple images to observe a single object from 
outside. It is, however, important to study how large the hopping interval should be 
to ensure a perceived smooth transition between the images. 

As shown in Figure 14.11, two neighboring cameras A and B are located along 
the circle (with radius R) of camera path. The object is assumed to be at the circle 
(with radius r) of constant depth. OA = OB = R, and OAi = OBi = r. The 
camera spacing is a = AOB = AiOBi. Let /3 = AiAO, 2/3 = A1AA2, and 
sin/3 = r/R. The angular flow between two images can be approximated as 

A9^2p^=2p-^. (14.9) 
A1A2 TT ~2(J 

Therefore, given the pixel flow threshold Do, we obtain the camera spacing as 

a = {^-l)Do. (14.10) 

For example, if l?o is 1°, and R = 3r, then a is computed as 4°. In other words, 
we need to capture 90 images along the circle. 

14.5.2 Hopping between parallel projection mosaics 

Another way to achieve continuous radial motion is to use parallel projection mo
saics [32]. Parallel mosaics are formed by collecting all parallel rays in the same 
direction. This is called angular hopping with parallel mosaics. 

Because parallel projection cameras are not commonly available, parallel mo
saics are rebinned by taking the parallel rays from a dense sequence of perspective 
images taken along a circle outside the object. Figure 14.13 shows a projective image 
from the original sequence and the rebinned parallel mosaic. Note that the rebinned 
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^ ^ 

(a) (b) 

Fig. 14.10. Hopping from outside: (a) translating continuously in the radial direction (toward 
the object); (b) hopping discretely in the angular direction (around the object). 

Fig. 14.11. Hopping interval between two perspective images (viewed from outside the object) 
is related to the field of view of the object (AiAA'z). The object is assumed to be bounded 
within the constant depth circle. 
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mosaic is called ID parallel mosaic because the vertical direction is still perspective, 
only the horizontal direction is under parallel projection. 

Assuming a constant depth for the object, we can reproject parallel mosaics to 
any novel view along the radial direction, as shown in Figure 14.12. Warping ID 
parallel mosaic in Figure 14.13(b) using constant depth is shown in Figure 14.13(c). 
Even though warping errors are created, such as those around the boundary of the 
object, they are small enough to cause little visual distortion. 

Parallel Mosaic"". 

Fig. 14.12. Reprojecting a parallel mosaic (shown as parallel dotted green lines) to different 
perspective images along the radial direction using constant depth assumption. The image 
shown by blue arrows is viewed at a normal distance away, while the image with red arrows 
is a close-up view. 

(a) (b) (c) 

Fig. 14.13. Warping parallel projection images: (a) a perspective image; (b) a ID parallel 
projection mosaic; (c) ID mosaic of (b) warped with constant depth, (c) and (a) are mostly 
similar except around edges (e.g., on the left edge of the pear). An advantage of usmg parallel 
mosaics is to have higher resolution especially for close-up views. 
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14.5.2.1 Close-up views 

Rendering a novel view with angular hopping using parallel mosaics can again be 
explained in the signed Hough space. Continuous motion along the angular direc
tion is obtained by approximating a cosine segment using a line segment. When the 
viewpoint is far away, the parallel mosaic approximates the perspective view very 
well. The reprojection or warping error increases as the viewpoint approaches the 
object. In addition, the image size of the parallel mosaic determines how closely the 
rendering camera can get to the object. Hopping using parallel mosaics and hopping 
using perspective images have similar warping errors, especially if constant depth is 
assumed. 

However, rebinned parallel mosaics can have a much higher resolution than the 
original image if a very dense sequence is captured. For example, a ID parallel mo
saic of 640 X 240 can be obtained from 640 original images with size 320 x 240. 
Close-up views rendered from rebinned parallel mosaics have better quality than 
simply zooming-in the original images. 

14.6 Experiments 

In this section, we show rendering results using images of both synthetic and real 
scenes. 

14.6.1 Synthetic environments 

A synthetic environment is represented with 41 CMs (with size 2400 x 288) on 
11 concentric circles. There are 21 tangent CMs and 21 normal CMs. Note that 
the center mosaic degenerates to a single perspective panorama, as shown in Fig
ure 14.15(a). At the outermost circle, the tangent CM is shown in Figure 14.15(b), 
while the normal CM is shown in Figure 14.15(c). By hopping between these mo
saics, five images are rendered from the left, right, center, front and back viewpoints 
shown in Figure 14.15(d). Parallax effects (both lateral and looming) are clearly 
visible from the rendered images. Also, hopping between these mosaics provides 
a smooth navigation experience. However, one can only switch lateral motion and 
looming motion at the center. For conventional rendering with CMs, 720 such mo
saics would have been used instead. Therefore, manifold hopping requires signifi
cantly less data for a similar viewing experience. 

A much larger environment can be constructed by combining more mosaics cap
tured at different locations. By carefully adjusting constant depths used for different 
sets, the user can hop smoothly from one circle to another, and inside a circle. 

14.6.2 Real environments 

A Sony Mini DV digital video camera was used to capture CMs of a real environ
ment. The camera rotates along a circle. The video is digitized at the resolution of 
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720 X 576. A total of 5726 frames are captured for a full circle. The raw data for 
the video sequence amounts to a total of 7 Gigabytes. Instead of using 720 rebinned 
CMs of size 5726 x 576, only a small subset (typically 21) of resampled CMs were 
selected. 

Three rebinned CMs are shown in Figure 14.16(a). Two high resolution images 
(with display size 500 x 400) rendered from 21 CMs are shown in Figures 14.16(b) 
and (c). Horizontal parallax around the tree and lighting change reflected from the 
window can be clearly observed. Constant depth correction is used in all the experi
ments. 

The original CMs can be resized to reduce the amount of data used in manifold 
hopping. As shown in Figures 14.16(d) and (e), two images with low resolution 
180 X 144 are rendered from 11 resized smaller CMs. It is important to note that 
simply resizing the original 11 CMs does not generate the expected CMs. Instead, 
mosaics of such small size should be resampled from the original dense sequence. 

A predictive coding compression algorithm with fast selective decoding and ran
dom access was used to compress the CMs. With this compression algorithm, the 
above 11 CMs were reduced to 88fc with a compression ratio of 78. Two correspond
ing rendered images using the compressed data are shown in Figures 14.16(f) and 
(g). 

14.6.3 Outside looking in 

In another experiment, a rotating object was captured in front of a stationary cam
era. Ninety parallel mosaics with resolution 645 x 288 were rebinned from the input 
sequence of 5277 images of resolution 360 x 288. These parallel mosaics have an 
angular hopping interval of 4 degrees. A perspective image from the input sequence 
is shown in Figure 14.17(a). Using the Lagrange interpolation, the rebinned ID par
allel mosaics are rather smooth, as shown in Figure 14.17(b). 

Figures 14.17(c) and (d) show two warped images from the ID parallel mosaics. 
Experiments showed that the hopping angular interval of 4 degrees provided a very 
perceptually smooth virtual camera movement. Two close-up views along the same 
viewing direction of Figure 14.17(c) are also shown in Figures 14.17(e) and (f). 
Because parallel mosaics have a higher resolution than the original images, close-
up views provide details that would not be possible by simply zooming-in on the 
original images. 

A sequence of 2D parallel mosaics were then synthetically generated using an 
angular hopping interval of 4 degrees in both longitudinal and latitudinal directions. 
Hopping between this collection of parallel mosaics again provides perceived smooth 
camera movements in two dimensions. 

14.7 Discussion 

While reducing data significantly, manifold hopping limits the freedom of user move
ment. In hopping with CMs, for instance, a user can only rotate along one of the con
centric circles. The user is not allowed to rotate at any given viewpoint except in the 
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center. As shown in the synthetic experiments, the user can only change from lateral 
hopping to looming hopping at the center. If the number of CMs is sufficiently large, 
it is also possible to hop around any fixed point in the angular direction by warping 
different CMs. In the signed Hough space, it is equivalent to finding segments from 
different r lines that approximate a sinusoidal curve. 

Manifold hopping is not restricted to hopping with CMs or with lateral or loom
ing movements. There are many other choices for manifolds and hopping directions. 
For example, hopping between panoramas has been used in QuicliTime VR [41] 
using "hotspots". When panoramas are closely spaced, hopping between them can 
also achieve a smooth transition. Figure 14.14 shows two examples of hopping be
tween panoramas. Figure 14.14(b) shows the signed Hough representation of a line 
of panoramas as in Figure 14.14(a), and Figure 14.14(d) shows the signed Hough 
representation of a circle of panoramas as in Figure 14.14(c). 

y •. 

p -

(a) 

% mmm^^ 
# 

(C) (d) 
Fig. 14.14. Hopping between panoramas: (a) along a line of 11 panoramas; (b) ray distribution 
of (a) in signed Hough space; (c) along a circle of 10 panoramas; (d) ray distribution of (c). 

There are two major differences between manifold hopping with CMs and hop
ping with panoramas. The first difference is in capturing. Panoramas can capture 
similar rays to CMs as the number of panoramas increases. However, the same result 
will require capturing panoramas many times at different locations, as opposed to 
rotating the camera only once for capturing CMs. 

The second and perhaps more important difference is in sampling. Each manifold 
mosaic is multiperspective, while each panorama has only a single center of projec
tion. Since different viewpoints can be selected as the desired path for the user, a 
multiperspective panorama could be more representative of a large environment than 
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a single perspective panorama. If the multiperspective image is formed by rays taken 
along the desired path of the user, the warping error from a multiperspective image 
is, on average, smaller than that from a perspective image (e.g., a panorama). 

CMs are suitable for the inside looking out. To observe objects from the outside 
looking in, parallel mosaics can be used for manifold hopping. For CMs, the mani
fold is a cylindrical surface. For parallel mosaics, the manifold is a plane originating 
from the object center. We have discussed manifold hopping in two dimensional 
space by constraining the rendering camera on a plane. The concept of manifold 
hopping can be generalized to higher dimensions. The analysis in higher dimensions 
is very similar to the two-dimensional cases. However, it is difficult to capture such 
manifold mosaics in practice. 

14.8 Concluding remarks 

In this chapter, we describe an IBR technique called manifold hopping that has the 
following properties: 

• It does not require a large amount of image data, and yet the user can perceive 
continuous camera movement. 

• It requires neither accurate depth nor correspondence, yet generates perceptually 
acceptable rendered images. 

Manifold hopping renders a novel view by locally warping a single manifold mo
saic, without the need for interpolating from several images. The key is that warping 
a single multiperspective image to a perspective image with a regular field of view 
causes insignificant distortion to the human eye, even with warping errors result
ing from incorrect depth information. Furthermore, local warping does not introduce 
structural errors such as double images which are perceptually disturbing. 

Most importantly, manifold hopping requires relatively little input data. Captur
ing manifold mosaics such as CMs is also easy. By sparsely sampling the CMs, the 
amount of data from the original CMs can be reduced by more than an order of 
magnitude. While manifold hopping provides only discrete camera motion in some 
directions, it provides reasonably smooth navigation by allowing the user to move in 
a circular region and to observe significant horizontal parallax (both lateral and loom
ing) and lighting changes. The ease of capture and the very little data requirement 
make manifold hopping very attractive and useful for many virtual reality applica
tions, in particular those on the Internet. 

Table 14.1 compares how manifold hopping differs from previous IBR systems, 
in terms of their geometric requirements, number of images, rendering viewpoints 
and perceived camera movement. Manifold hopping stands out in that it ensures a 
perceived continuous camera movement even though rendering viewpoints are dis
crete. It builds on the observation that a fairly large amount of viewpoint change is 
allowed, while maintaining perceptually continuous camera movement to humans. 
This observation of "just-enough hopping" for reducing image samples is, in spirit. 
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Fig. 14.15. Lateral and looming hopping between CMs of a synthetic environment: (a) a tan
gent CM; (b) the middle panorama; (c) a normal CM; each mosaic has the size of 2400 x 288. 
(d) five rendered views from manifold hopping at the left, center, right, forward and backward 
locations. Note that the horizontal parallax is clearly visible between the left and right views; 
the looming effect can be seen from the forward and backward views. 
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Fig. 14.16. Hopping between CMs: (a) three CMs projected onto cylinders; (b)(c) two ren
dered images at a high resolution 500 x 400; (d)(e) rendered images with a low resolution 
180 X 144; (f)(g) low resolution rendered images using 88fc compressed data. 
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Fig. 14.17. Hopping between parallel mosaics: (a) a perspective image from the original se
quence; (b) a rebinncd ID parallel mosaic with higher resolution; (c)(d) two rendered images 
from different viewing directions; (e)(f) close-up views along the viewing direction of (c). 
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Light fields 1160,91,267J 
3D Warping 1189,192, 264,391 

View interpolation 140,194,260, 6] 
Hopping 1170,411 
Manifold hopping 

Geometry 
no/approximate 

accurate 
accurate 

no 
no/approximate 

Images 
very large (100 ~ 10000+) 

small (1 ~ 10+) 
small (2 ~ 10+) 

moderate (10 ~ 100+) 
moderate (10 ~ 100+) 

RV 
C 

c 
c 
D 
D 

PM 
C 

c 
c 
D 
C 

Table 14.1. A table of comparison for different IBR teciiniques (with representative citations): 
geometry requirements, number of images, rendering viewpoints (RV), and perceived camera 
movement (PM). Note: C = continuous, D = discrete. 

similar to the "just-necessary effort" adopted by perceptually based techniques [241] 
on realistic image synthesis to reduce computational cost. 
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Large Environment Rendering using Plenoptic 
Primitives 

One of the most difficult tasks in computer graphics is to enable virtual walkthroughs 
in very large and complicated environments that are photorealistic, seamless, and in 
real-time. Most current IBR techniques, while capable of photorealism and interac
tive speeds, have failed in practice to extend to visualizations of such environments. 
(One exception is the work of Aliaga and Carlbom [4], but their approach requires 
a dense set of images to be taken.) In this chapter, we describe an approach that de
fines a virtual walkthrough experience using plenoptic primitives (PPs). A PP can 
be any type of local visual experience: 360° static panorama, panoramic video (PV), 
Lumigraph/Light Field representation, or Concentric Mosaics (CM). By combining 
them judiciously, user experience can be authored with significantly reduced effort 
while maintaining high-quality user experience. In this chapter, results for synthetic 
and real environments using PVs and CMs are shown; they illustrate how the issue 
of achieving smooth transitions among PVs and CMs can be addressed by using 
position-dependent local geometries. 

For purely IBR techniques, the data acquisition process is generally not trivial, 
since the camera parameters associated with each input image need to be known ac
curately. In addition, the size of the database is often very large, especially for the 
light field, Lumigraph, and Concentric Mosaics representations. Furthermore, none 
of these methods have been demonstrated on continuous navigation within a large 
and complicated environment, even though it is possible in principle. In practice, 
both the image acquisition process and resulting size of the augmented database 
will quickly become unmanageable. The other option of using a global 3D model is 
not very attractive from two perspectives: One, it is unlikely to produce photoreal
istic views, and two, generating a reasonably accurate global model of a scene on 
a wide scale is extremely difficult without good initial estimates from non-image-
based sources. An example of this approach is MIT's City Scanning Project [296]. 

Aliaga and Carlbom [4] describe an approach for rendering a large environment. 
They use a remotely guided robot fitted with a catadioptric omnidirectional camera 
to acquire sequences of images along a criss-crossing path. The smallest enclosing 
camera path loop is used to synthesize a virtual view. Their approach differs from the 
PP-based system because they sample the environment almost uniformly and using a 
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homogeneous representation throughout (i.e., treating all spaces as equally important 
or interesting). In the PP-based approach, the visual experience is customized by 
using spatially-dependent representations. 

15.1 Customized visual experience 

The PP-based approach relies on the assumption that different locations in a scene 
usually have different visual appeal, and that the mode of visual interaction should 
reflect this. Consequently, by customizing visual experience at each scene location, 
the user can reduce the effort in image acquisition and resulting size of the total 
database without degrading the quality of visual experience. The customization is in 
the form of prespecifyingp/enopf/cpr/m/rive.v (PPs), in a spirit similar to the concept 
of "visual tunnel primitives" [137]. 

Note that while the size of the environment plays a part in how a person can be 
influenced in customizing the visual experience, the complexity of the environment 
is probably a more significant factor. For example, a 100 ft x 100 ft bare room can be 
easily represented by just a set of Concentric Mosaics (CMs) or a panoramic video 
(especially if the room looks uninteresting). However, the floor of a building with 
the same exact dimensions, but with many rooms and more detailed structures could 
require a significant number of panoramic videos and CMs. 

15.2 Organization of chapter 

We start by describing PPs in Section 15.3. Section 15.4 delineates the steps required 
to construct and render the environment. We then describe the authoring process in 
Section 15.5, the user interface in Section 15.6, and the rendering process in Sec
tion 15.7. Section 15.8 shows image snapshots of a virtual walkthrough in progress 
with descriptions of rendering performance. Practical issues regarding large-scale 
environment visualization and areas for future work are discussed in Section 15.9, 
followed by concluding remarks in Section 15.10. 

15.3 Plenoptic primitives (PPs) 

A PP can be a 360° static panorama, panoramic video (PV), Lumigraph/Light Field 
representation, or Concentric Mosaics (CMs). By prespecifying user experience as 
combinations of PPs, the effort required for data capture and authoring can be re
duced while maintaining high-quality visual impact and walkthrough experience. In 
this chapter, PVs and CMs of synthetic and real environments are used to illustrate 
this idea; PVs and CMs are used because of their ability to allow full panoramic 
viewing (i.e., inside looking out and all around). 

Each PP has its own range and degree of freedom of visualization. It is known 
that an effective way of reducing data is to constrain the motion or viewpoints of the 
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virtual camera. One of the earliest example of this is the Movie Map system [170]. 
Here the user plays back a prerecorded sequence of images to create the illusion of 
navigating along a spatial path. Another well-known example is the QuickTime VR 
system L41], where users are afforded panoramic experiences at discrete locations. In 
the authoring process, locations which are deemed less interesting will be assigned 
PPs with less input data requirements (and consequently more impoverished range 
of virtual camera motion). 

A number of adventure/mystery games, such as Myst® and Riven®, feature 
walkthroughs within realistic-looking environments. They also provide a mix of dif
ferent kinds of experiences, such as panoramas and texture-mapped 3D scenes. There 
are two important differences between these applications and the PP-based system. 
For one, the its rendering mechanism is primarily IBR-based, and two, its rendering 
is visually smooth throughout the course of a virtual walkthrough. 

15.3.1 Panorama and panoramic video 

A panorama is a 2D image with a 360° field of view along at least one angular 
direction. A lot of research work has been done in generating panoramas (e.g., [41, 
291, 330]), and many commercial hardware and stitching software products to create 
panoramas are also now available. A panoramic video (PV) refers to a sequence 
of panoramas created at different locations along a path in space. While the virtual 
camera location is constrained to be along the path of image acquisition, the PV is 
still effective in providing seamless walkthrough. A PV can also be used to capture 
dynamic scenes at a stationary location. 

15.3.2 Lumigraph/Light Field representations 

The light field [160] and Lumigraph [91] are 4-parameter subsets of the plenoptic 
function [2]. By using a two-slab representation and dense image sampling, they 
have demonstrated that interactive photorealistic visualization is possible. However, 
in addition to requiring a large database, their field of view is also limited by virtue of 
the two-slab representation. Extensions to the light field such as the Spherical Light 
Field [113] exist, but data capture for such extensions is usually not trivial. 

15.3.3 Concentric Mosaics 

The disadvantage of the small field of view of the light field and Lumigraph can be 
overcome by sampling along a horizontal circular path and rebinning light rays in 
a 3D representation called Concentric Mosaics (CMs) [267]. This representation al
lows panoramic visualization within a planar disk. While it does require some depth 
correction along the vertical axis for visually acceptable scaling, its ease of data 
capture and compelling local visual experience make the CM an attractive represen
tation. 

The comparisons between the different PPs are shown in Table 15.1. In this chap
ter, the PP-based concept of representing visual experience in a large environment is 
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Table 15.1. Comparison of different PPs. "Dims." refers to the number of dimensions for 
representation. 

Plenoptic Primitive 
Panorama 
Panoramic video 

Concentric Mosaics 
Light Field/Lumigraph 

Dims. 
2 
3 

3 
4 

Navigation Mode 
Orientation at a point 

Orientation along 
a 3D trajectory 

Panoramic within disk 
Limited 6 DOF 

illustrated using PVs and CMs. This is primarily because both are relatively easy to 
capture, and they both provide panoramic visibility from the inside looking out. 

15.4 Constructing and rendering environments 

There are a number of steps that must be taken before a virtual walkthrough in a 
large environment can take place. These steps (shown in Figure 15.1) are as follows: 

• Calibrate. The first step is to calibrate the camcorders in order to extract their pro
jection characteristics. Calibration techniques described in [136] and [346] were 
used to estimate the radial distortion and camera intrinsic parameters, respec
tively. The technique described in [136] involves just manually drawing contours 
approximately corresponding to projections of 3D straight lines; the contours are 
automatically refined while the radial distortion parameters are computed. The 
technique of [346] requires only a small number of snapshots of a flat calibration 
pattern at different orientation. These two techniques are very simple to use. 

• Capture. For the synthetic environment case, 3D Studio Max® was used to gen
erate the input images, while a special rig was used to acquire images for a real 
environment. In each case, the inputs are five image streams. More details are 
given in their respective subsections in Secfion 15.8. 

• Preprocess. Before the authoring process can begin, the five image streams have 
to be corrected for distortion, recentered, synchronized, and composited frame 
by frame. 

• Author. This step involves the specification of PVs and CMs, and how they are 
related to each other spatially. It is described in Section 15.5. 

• Render. This online step is described in Section 15.7. Among others, it involves 
the important issue of ensuring smooth transitions between different PPs. 

All steps except the render step are done offline. 

15.5 The authoring process 

The authoring process requires the specification of visual nodes and visual paths that 
involves single panoramas, PVs, and CMs. A visual node signifies transition points or 
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Calibrate 
3 i : 

Capture 
AH 

Preprocess 
3 1 1 

Author 

Network of PPs 

Visual 
nodes 

Visual 
paths 

OFFLINE 

Render 

Microsoft Directs D ® 

Local 
PVs CMs 

geometries 

ONLINE 

Fig. 15.1. Processes involved in constructing and rendering environments. 

Feature 

Plan map 
Visual spots 

Visual paths 
Panoramic Videos 

Concentric Mosaics 

Local geometries 

Specification 

Image, extent 
Count, location, 
index to local geometry 
Count, link to visual spots 
Count, filename format, links to 
panoramic image frames, 
number of rendering faces, 
orientation of rendering faces 
Count, filename format, 
links to visual spots, 
camera parameters, frame size 
Count, topology, vertex locations 

Table 15.2. Feature placement information. It has six parts. 
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points of interest. It can be a CM center, center of a panorama, where a PV starts and 
ends, where a PV intersects another PV, and where local scene geometry is specified. 
In addition, it encodes relative camera orientations between connected PPs. If these 
orientations are different at the two ends of a PP, they are linearly interpolated in-
between. A visual path is an entity that connects any two visual nodes. This permits 
the user to create a network of PPs. Figure 15.2 shows a plan map of an environment 
with visual nodes and paths. The feature placement information is specified in a 
descriptive text file, which has six parts (see Table 15.2). 

The location-dependent geometries (last item in Table 15.2) are used for CMs, 
and for PV-CM and CM-CM transitions. It is assumed that the image data capture 
and online viewing occur at the same horizontal level. 
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Fig. 15.2. An example of a plan map with specified visual nodes and paths. 

Once the authoring process is complete, with the network of PPs fully specified, 
the system will then be ready for interactive rendering of the environment. Before we 
provide details on the rendering process, let us first briefly describe the user interface 
and how the user can navigate with it. 

15,6 User interface 

The user interface for a virtual walkthrough is composed of the viewport on which 
the current virtual camera view is displayed, and the plan map, which indicates the 
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current virtual camera location and orientation relative to the environment. The in
terface is shown in Figures 15.5 and 15.11 for two different environments. 

The user interface allows bidirectional control over the virtual camera position 
and motion between the viewport and map. Within the viewport and using the mouse, 
the user is able to pan and tilt the camera, zoom in or out, and move forward or 
backward. Within the map, the user can jump direcdy to a location by just clicking 
over the desired destination. The user can also move continuously by holding the 
mouse down and move along a PV, within a CM, or transition between them. In 
addition, the map can also be reoriented or zoomed in or out within the screen plane. 

15.7 Rendering issues 

In this section, we describe how various PPs are rendered and how smooth transitions 
between different types of PPs are achieved. 

15.7.1 Rendering PVs 

Each frame of a PV is cast as a cubic texture, with each texture face mapped to a 
face of a cube and rendered. The frames are accessed on demand directly from disk 
using the file cache of the OS. Panning and tilting is achieved by rotating the viewing 
camera, and moving is by translating the cube center to the current viewing position 
(i.e., loading the appropriate texture maps). 

15.7.2 Rendering CMs 

Full details of rendering CMs can be found in [267] (a summary is given in Chap
ter 2). The basic rendering algorithm is extended in the PP-based system by incor
porating the notion of position-dependent local scene geometries (described in more 
detail in Section 15.7.3) similar in concept with [239]. The steps required for render
ing CMs are as follows: 

• For a given camera viewpoint, compute z-buffer for the local scene geometry and 
lock the z-buffer. The z-buffer has to be locked before it can be read. (GPU) 

• Read the z-buffer and convert to floats. (CPU) 
• For each column of the output view, render the slit image with the depth correc

tion using the z-buffer depths. (CPU) 

To optimize rendering speed, Microsoft DirectSD® is used to render the mesh with
out displaying it. 

15.7.3 Ensuring smooth transitions 

This is actually non-trivial and posed a significant challenge in the PP-based work. 
The key is to use local geometries. These local geometries can be placed at positions 
where the user deems to be necessary or appropriate. Examples of placements are 
shown in Figure 15.3. In the implementation, the number, placement, and complexity 
of the local geometries were manually chosen. 
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(a) (b) 

Fig. 15.3. Examples of possible distributions of local geometries for depth correction (many 
other possibilities exist), (a) For PV-CM, (b) For PV-CCM. A CM is represented by a circle 
while a PV is represented by a curve segment. Places of transition are in red. The center of a 
CM is marked x while the location of a local geometry is marked a green +. 

PV-PV transition 

This is the simplest transition. In the authoring process, frame indices are specified in 
transitions between PVs. Along a PV, moving forwards or backwards has the effect of 
stepping ahead or behind in time in the current panoramic image sequence. Moving 
from one PV to a different PV via a prespecified visual node is equivalent to reading 
a different set of image streams, possibly starting at an intermediate frame. In either 
case, the virtual camera orientation is maintained during the transition. 

CM-CM transition (Concatenated CM, or CCM) 

Smooth transitioning between CMs can be regarded as a special case of image mor-
phing. Without depth information, visual discontinuity will very likely be observed 
when the user switches from one CM to another, or double images in the case of 
blending. In real scenes, accurate depth is usually not known or easily recovered; 
however, as we will show later, approximate depth is more often than not sufficient. 

Constant depth has been used for rendering CMs, and while this is adequate 
for single CMs, visual artifacts can be significant with multiple CMs. As a result, 
location-dependent approximate scene geometry are used—in the form of vertically 
stacked radial depth polygons (RDPs), as shown in Figure 15.4. The vertices of each 
RDP are distributed uniformly along the angular direction. The 3D surface represent
ing the scene is created by linking these stacked RDP vertices. In the implementation, 
each local scene geometry is represented by 13 stacked RDPs, with each RDP having 
128 vertices, yielding a total of 1658 vertices. 

The shape of the local scene geometry is initialized by applying stereo on the 
CM in a similar manner as described in [272], except that ID matching is used in 
conjunction with tensor voting [195J. This produces reasonably good quality stereo 
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Fig. 15.4. Local scene geometry represented as stacked radial depth polygons (RDPs). Only 
three RDPs arc shown here. 

reconstruction (the measure in terms of RMS reprojection error), even in the presence 
of discontinuities. 

PV-CM and PV-CCM transitions 

Within a CM (or CCM, i.e., concatenated Concentric Mosaics), prior to transitioning 
to a PV, the image is rendered in the following manner. At the current virtual camera 
location, the environment is rendered using each local geometry separately first. The 
final view is produced by linearly combining these rendered views using weights that 
are based on proximity of the local geometry centers to the current virtual camera 
position. More specifically, the weights are inversely proportional to the distance of 
the virtual viewpoint to the local geometry centers. As a result, the rendering time 
increases linearly with the number of local geometries. In the implementation, the 
number of local geometries within each PV-CM, PV-CCM overlap were restricted to 
at most two, and for the two environment examples, this restriction was adequate. 

Once the local geometry position has been decided, the time taken to generate a 
single local geometry takes between 20-50 minutes. This includes stereo computa
tion (done only once), verifying transitions to be visually acceptable, and modifying 
the complexity of the local geometry if necessary. 

15.8 Experimental results 

The results for two environments are used to illustrate the PP-based concept of cus
tomizing visual experience. One is a relatively complicated synthetic environment. 
The other is a real environment inside a small museum. Both environments were 
rendered using a 866MHz PC and a Hercules 3D Prophet 11 GTS graphics card with 
64MB DDR RAM. The rendering performance is shown in Table 15.3. 
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15.8.1 Synthetic environment 

The input images used for the synthetic environment experiment were rendered us
ing 3D Studio Max®. Each input image has the resolution of 512 x 512, and a 
total of about 5000 images were used (3000 for three CMs and 2000 for PVs). The 
rendering time for all of these images took about 30 hours using 8 PCs. Example 
screenshots of the synthetic environment during the course of a virtual walkthrough 
are shown in Figure 15.5 and 15.6. An example of the result of using local geometries 
for transitioning is shown in Figure 15.7. A close-up view of the transition frames 
in Figure 15.8 shows that using local geometries produced a more visually correct 
effect. 

Fig. 15.5. Display of a synthetic environment. Top: Viewport (700 x 480), Bottom; Plan view 
of the virtual camera relative to the environment. 
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Fig. 15.6. Sample screenshots of a walkthrough for synthetic environment. 

Fig. 15.7. Transitioning between PVs and CMs for synthetic environment. The virtual camera 
is moving forward. Top row: Transition using only constant depth. Bottom row: Transition 
using local geometry. The first two left images are from PVs while the last two images are 
from CMs. 

"m^: 

Fig. 15.8. Close-up view of transition between PVs and CMs (second and third columns of 
Figure 15.7). Note that the virtual camera is moving forward. Top row: Using only constant 
depth. Notice the scaling is significantly more in the x-direction than in the y-direction. Bottom 
row: Using local geometry. Here the scaling looks more visually correct. Compare the shadow 
of the fence at the bottom of the images. 
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15.8.2 Real environment 

The interior of a local museum is used as the real environment example. Example 
screenshots of the real environment during the course of a virtual walkthrough are 
shown in Figure 15.11 and 15.12. An example of the result of using local geome
tries for transitioning is shown in Figure 15.13. As shown in the close-up version in 
Figure 15.14, using local geometries produced a significantly less abrupt change in 
viewpoint during the transition from a panoramic video to Concentric Mosaics. 

Acquiring the data 

-1 

Fig. 15.9. Capturing device. It has five camcorders attached to a rotating arm, a motor, and an 
uninterruptable power suppy (UPS). 

The capturing system shown in Figure 15.9 was used to acquire the input images 
for visualizing a real environment. It has five Elura digital camcorders fitted with 
wide-angle lenses attached to a platform. This platform is attached to the end of an 
arm capable of being rotated by a motor. The length of the arm is about 2.5 feet. All 
these are placed on a movable cart. An uninterruptable power supply (UPS) is used 
as a portable power supply for the motor. 

Since it is not possible to genlock the camcorders, synchronization is performed 
manually by the operator positioning between two cameras while maintaining visi
bility and clapping hands. This is done for every adjacent pair at the start of record
ing. The cart was then manually pushed around during the recording of the PVs, and 
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was kept stationary with thie motor switciied on for the recording for CMs. The oper
ator was careful to get out of the visual range of the camcorders as much as possible; 
this was done by crouching behind the cart during recording. Each image has a res
olution of 688 X 480, and a total of about 4800 frames per camcorder were used in 
this rendering experiment. 

Data processing 

Since the images were acquired using camcorders with wide-angle lenses, they were 
quite severely distorted, as can be seen in Figure 15.10. Calibration techniques de
scribed in [136] and [346] were used to extract the radial distortion and camera in
trinsic parameters, respectively. 

Once the images have been corrected and calibrated, the optimal relative trans
forms between the cameras were found using the image overlaps. There is some par
allax due to the camcorders having different centers of projection, but this problem 
was not severe since the objects in the scene were distant. Once the camera relative 
transforms have been estimated, the multiple video streams are composited frame 
by frame. The parallax problem was reduced by applying a deghosting technique as 
described in [291]. 

Fig. 15.10. Frames from two of the five digital camcorders. 

Rendering performance 

Table 15.3 shows the rendering performance for the PP-based system (a 866MHz 
PC and a Hercules 3D Prophet II GTS graphics card with 64MB DDR RAM). Not 
surprisingly, virtual navigation within a CM or CCM is relatively slow. This is be
cause of the processing necessary for depth compensation using the local geometries 
(there are two local geometries per CM or CCM). The rendering speed is inversely 
proportional to the total pologon count in the local geometries. One direct way of 
increasing this speed is to reduce the polygon count associated with the local geom
etry, but this will very likely degrade the PV-CM rendering transition. The number 
of local geometries and their complexity are currently selected a priori. 
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Fig. 15.11. Display of a real environment. Top: Viewport (700 x 480), Bottom: Plan view of 
the virtual camera relative to the environment. 

Table 15.3. Average rendering performance for a viewport size of 700 x 480. 

Type of navigation Frame rate (fps) 
PV move 8 (first time, retrieve from disk) 

20 (when frames are cached) 
PV rotate 63 
CM move 10 
CM rotate 10 
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Fig. 15.12. Sample screenshots of a walkthrough for real environment. 

Fig. 15.13. Transitioning between PVs and CMs for real environment. The virtual camera 
is moving at an angle to the principal view direction. Above: Transition using only constant 
depth. Below: Transition using local geometry. The first two left images are from PVs while 
the last two images arc from CMs. Notice the shape of the monitor near the middle of the 
image before and after the transition. 

15.9 Discussion 

There remains a number of issues to contend with. For example, the issue of capture 
is a difficult one, especially when full panoramas need to be captured in real-time. 
Because multiple camcorders were used to capture the environment, parallax was an 
issue. The solution to this is to use specialized hardware for image acquisition, such 
as that used by iMove, Inc.' for capturing their panoramic video. In their system, 
six CCDs are assembled close to one another to minimize parallax. Each CCD is 
arranged to look out of a different face of a cube. Their outputs are also synchronized 
and streamed directly to disk. 

It is clear also that for optimal visual experience, it is necessary to put the hu
man in the loop to decide the importance (or attach degree of visual appeal) to the 

^ http://www.imoveinc.com/ 
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Fig. 15.14. Close-up views of the transition frames (second and third columns in Figure 15.13). 
Note that the virtual camera is moving at an angle to the principal view direction. Leftmost 
pair: Using only constant depth. Rightmost pair: Using local geometries. The appearance 
change is much less abrupt when local geometries are used. 

environment. This puts the control of customizing right to the user or environment 
author. This is critical in the case of authoring walkthroughs for very large or com
plicated environments, such as the interior of an entire building or a city. Allowing 
the user in the loop will help reduce the size of the database required. 

The use of PPs to represent the environment avoids the difficult problem of global 
reconstruction of 3D models. While local 3D reconstruction has been relatively suc
cessful, it has yet to be demonstrated on scenes on a very wide scale. An example 
of such a project is MIT's City Scanning Project [296], but it uses GPS readings 
and spatially sparse image capture. The output is a set of texture-mapped 3D mod
els. The "plenoptic stitching" work of Aliaga and Carlbom [4] is a good approach to 
rendering large environments, but this approach was demonstrated for a small num
ber of connected rooms at a time. The size of the database becomes an issue if the 
environment involves, say, an entire floor of a building. 

Local geometries are used to enhance the quality of transition between separate 
PVs. However, the degree of accuracy of each local geometry and number of them 
to be used for acceptable transition is still an area of future work. While Chai et 
al. [33] have analyzed the rendering quality with respect to the sampling density 
and accuracy of geometry, their analysis does not take into consideration occlusion 
events, and they assume regular sampling. In the implementatino, the number of 
local geometries and the complexity of the local geometries were chosen by hand to 
produce a visually acceptable transition. 

The performance of the rendering system can be improved by using a faster PC 
and graphics accelerator (obviously), or by using multithreading in a multi-processor 
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PC. There are a number of rendering processes (such as z-buffer conversion to float 
and depth-correction of vertical CM slits) that can benefit from multithreading. 

15.10 Concluding remarks 

This chapter illustrates the concept of customizing a visual experience that is real
istic, interactive, and equally important, smooth. This concept relies on plenoptic 
primitives (PPs), which permit the author of the environment to minimize labor in
volved in acquiring input and processing requirements without sacrificing quality of 
experience. 

Other PP types such as the two-slab light field and Lumigraph can be added. In 
addition, adding local geometries along PVs would allow the navigation to deviate a 
little from the sampling camera path. Stereo data can also be used to automatically 
estimate these local geometries. 



16 

Pop-Up Light Field: An Interactive Image-Based 
Modeling and Rendering System 

In this chapter, we describe an image-based modeling and rendering system called 
pop-up light field. It models a sparse light field using a set of coherent layers. In this 
system, the user specifies how many coherent layers should be modeled or popped 
up according to the scene complexity. A coherent layer is defined as a collection 
of corresponding planar regions in the light field images. A coherent layer can be 
rendered free of aliasing, all by itself or against other background layers. To construct 
coherent layers, we introduce a Bayesian approach, coherence matting, to estimate 
alpha matting around segmented layer boundaries by incorporating a coherence prior 
to maintaining coherence across images. 

The system to construct the pop-up light field has an intuitive and easy-to-use 
user interface (UI). The key to UI is the concept of human-in-the-loop where the user 
specifies where aliasing occurs in the rendered image. The user input is reflected in 
the input light field images where pop-up layers can be modified. The user feedback 
is instant through a hardware-accelerated real-time pop-up light field renderer. Ex
perimental results demonstrate that the system is capable of rendering anti-aliased 
novel views from a sparse light field. 

16.1 Motivation and approach 

Here is an interesting question: Can we use a relatively sparse set of images of a 
complex scene and produce photorealistic virtual views free of aliasing? A straight
forward approach would be to perform stereo reconstruction or to establish cor
respondence between all pixels of the input images. The geometric proxy is a 
depth map for each input image. Unfortunately, state-of-the-art automatic stereo 
algorithms are inadequate for producing sufficiently accurate depth information 
for realistic rendering. Typically, the areas around occlusion boundaries [147, 
140] in the scene have the least desirable results, because it is very hard for stereo 
algorithms to handle occlusions without prior knowledge of the scene. 

One can approach this problem by suggesting that it is not necessary to recon
struct accurate 3D information for each pixel in the input light field. A reasonable so-
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lution would then be to construct a pop-up light field by segmenting the input sparse 
light field into multiple coherent layers. A pop-up light field differs from other lay
ered modeling and rendering approaches (e.g., [9, 156, 264]) in a number of ways. 
First, the number of layers needed in a pop-up light field is not pre-determined. 
Rather, it is decided interactively by the user. Second, the user specifies the layer 
boundaries in key frames. The layer boundary is then propagated to the remaining 
frames automatically. Third, the representation is simple. Each layer is represented 
by a planar surface without the need for per-pixel depth. Fourth and most importantly, 
the layers are coherent so that anti-aliased rendering using these coherent layers is 
achieved. Each coherent layer must have sufficiently small depth variation so that 
anti-aliased rendering of the coherent layer itself becomes possible. Moreover, to 
render each coherent layer with its background layers, not only accurate layer seg
mentation is required on every image, but segmentation across all images must be 
consistent as well. 

To segment the layers, the user interface is key. A good user interface can enable 
the user to intuitively manipulate the structure of a pop-up light field so that virtual 
views with the desired level of fidelity can be produced. By having a "human-in-the-
loop" for pop-up field construction, the user can specify where aliasing occurs in the 
rendered image. Then, corresponding layers are refined accordingly. More layers are 
popped up, refined and propagated across all images in the light field until the user 
is satisfied with the rendering quality (i.e., no aliasing is perceived). 

16.2 Outline of chapter 

The rest of this chapter is organized as follows. After reviewing related work in Sec
tion 16.3, we introduce in Section 16.4 the representation of pop-up light field, which 
consists of a set of coherent layers, and coherence matting that maintains the layer 
consistency across frames in the light field. Section 16.5 details the operations in 
the user interface. Section 16.6 describes the real-time hardware-accelerated pop-up 
light field rendering algorithm. Experimental results are presented in Section 16.7. 
Discussion and concluding remarks are provided in Sections 16.8 and 16.9, respec
tively. 

16.3 Related work 

Many image-based interactive modeling systems use only one image, which impose 
or assume certain geometric constraints on the scenes. For example, the "Tour in 
Pictures" system [110] models the scene by a simple spidery mesh. In the single 
view metrology work of Criminisi et al. [57], 2D projections of 3D parallel lines 
must be present in the input image, so that the user can click on them to compute 
vanishing points. An elaborate modeling system was proposed in [201] where depth 
values are assigned to pixels in a single picture. Interactive single view systems are 
difficult to generalize to a sparse light field, which still consists of many images. 
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Furthermore, while it is straightforward to perform interactive image segmentation 
on a single image, consistent propagation of image regions to different images is a 
challenging task. 

The UI for designing a multiview/multiframe interactive modeling system has 
been a challenge. Most available movie editing tools are in fact manual systems, 
requiring frame-by-frame editing and consistency maintenance. The Facade sys
tem [61] is an interactive modeling system that makes use of 3D geometry derived 
from a sparse set of views (image-based) and a modeling program (geometry-based). 
Plenoptic editing [262] first recovers a 3D voxel model from a sparse light field, and 
then applies traditional 3D warping to the recovered model. Thus, this automatic 
system shares the same shortcomings with stereo reconstruction. Chapter 17 (based 
on [347]) describes a feature-based technique for morphing between two light fields. 
The key to this technique is an easy-to-use UI for feature specification. 

Layers have been proved successful [9, 156, 264] in image-based rendering. 
Coherent layers [156] are constructed from 3D models for efficient rendering. A 
two-step rendering algorithm is used to render layered depth images (LDIs). While 
significant progress has been made in automatic reconstruction of layers [313, 9, 
143] in the computer vision community, the layers are not accurate enough for 
artifact-free rendering. In a pop-up light field, the user interactively determines how 
many layers to be generated (or "popped up"), initializes the layers in key frames, 
and modifies the layers by inspecting the rendering quality. 

Layered representadons always demand accurate alpha matting along the layer 
boundary (e.g., the sprites in [264]). To estimate alpha matting from images, blue 
screen matting was proposed in [279]. Recently, a Bayesian approach for digital 
matting was proposed in [47], which provides an excellent survey on other patented 
matting algorithms [14, 197, 249]. Video matting based on the same Bayesian frame
work has been reported in [461. However, video matting is not designed to have 
consistent alpha mattes across frames. More accurate alpha can be estimated when 
the multi-backgrounds are available [315, 191]. In image-based opacity hulls, muUi-
background matting is used to acquire alpha mattes to construct a visual hull with 
view dependent opacity. 

16.4 Pop-up light field representation 

If a light field is undersampled, conventional light field rendering [160] results in 
aliasing. The top row of Figure 16.1 shows the rendering of a sparse light field with 
5 x 5 Tsukuba images. The top right image is rendered with the 5 x 5 sparse light 
field by setting a single focal plane in the scene [116]. Double images can be easily 
observed on the front objects. 

The bottom row of Figure 16.1 shows that anti-aliased rendering can be achieved 
using four layers, each of which employs a simple planar surface as its geometric 
proxy. By splitting the scene into multiple layers, the depth variation in each layer 
becomes much smaller than that in the original sparse light field. 
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Fig. 16.1. An example of rendering with pop-up light fields. Rendering using the 5x5 Tsukuba 
light field data set is shown in the top left. Aliasing is clearly visible near front objects in 
the bottom left image because the input light field is sparse. The top row shows that the pop
up light field splits the scene gradually into four coherent layers, and achieves anti-aliased 
rendering as shown in the bottom right image. 

See color plate section near center of book. 

The pop-up light field is represented by a collection of coherent layers. A key 
observation in the pop-up light field representation is that the number of coherent 
layers that should be modeled or "popped up" depends on the complexity of the 
scene and how undersampled the input light field is. For a sparser light field, more 
layers need to be popped up for anti-aliased rendering. 

16.4.1 Coherent layers 

A coherent layer Lj is represented by a collection of corresponding layered image 
regions ff in the light field images /*. These regions are modeled by a simple geo
metric proxy without the need for accurate per-pixel depth. For example, a global 
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Fig. 16.2. A light field (with images h and h) can be represented by a set of coherent layers 
(Li and L2). A coherent layer is a collection of layered images in the light field. For instance, 
Li is represented by layered image R \ (from h) and Rl (from J2). Each layered image has an 
alpha matte associated with its boundary. Part of the scene corresponding to each layer (e.g., 
Z/i) is simply modeled as a plane (e.g.. Pi). 

planar surface (Pj) is used as the geometric proxy for each layer L-, in the example 
shown in Figure 16.2. To deal with complicated scenes and camera motions, a local 
planar surface P? can also be used to model the layer in every image i of the light 
field. 

A layer in the pop-up light field is considered as "coherent" if the layer can be 
rendered free of aliasing by using a simple planar geometric proxy (global or local). 
Anti-aliased rendering occurs at two levels when 

1. the layer itself is rendered; and 
2. the layer is rendered with its background layers. 

Therefore, to satisfy the first requirement, the depth variation in each layer must 
be sufficiently small, as suggested in [33]. Moreover, the planar surface can be ad
justed interactively to achieve the best rendering effect. This effect of moving the 
focal plane has been shown in [116, 33]. 

However, to meet the second requirement, accurate layer boundaries must be 
maintained across all the frames to construct the coherent layers. A natural ap
proach to ensuring segmentation coherence across all frames is to propagate the 
segmented regions on one or more key frames to all the remaining frames [264, 
347]. Sub-pixel precision segmentadon may be obtained on the key frames by metic
ulously zooming on the images and tracing the boundaries. Propagation from key 
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frames to other frames, however, causes inevitable under-segmentation or over-
segmentation of a foreground layer. Typically over-segmentation of a foreground 
layer leads to the inclusion of background pixels, thus introducing ghosting along 
the occlusion boundaries in the rendered image. A possible example of foreground 
over-segmentation is exhibited in Figure 4(g) of [264] where black pixels on the 
front object's boundary can be observed. To alleviate the rendering artifacts caused 
by over-segmentation or under-segmentation of layers, the layer boundary needs to 
be refined using alpha matting [235]. 

Figure 16.2 illustrates coherent layers of a pop-up light field. All the pixels at 
each coherent layer have consistent depth values (to be exact, within a depth bound), 
but may have different fractional alpha values along the boundary. To produce frac
tional alpha mattes for all the regions in a coherent layer, a straightforward solution is 
to apply video matting [46]. The video matting problem is formulated as a maximum 
a posterior (MAP) estimation as in Bayesian matting [47], 

argmaxP(F,S,Q: |C) 

= arg max L{C\F,B,a) + L{F) + L{B) + L{a) ^^ '̂̂ ^ 

where L(-) = logP{-) is log likelihood, C is the observed color for a pixel, and F, 
B and a are foreground color, background color and alpha value to be estimated, 
respectively. For color image, C, F and B are vectors in RGB space. In Bayesian 
matting and video matting, the log likelihood for the alpha L{a) is assumed constant 
so that L{a) is dropped from Equation (16.1). 

In video matting, the optical flow is applied to the trimap (the map of foreground, 
background and uncertain region), but not to the output matte. The output foreground 
matte is produced by Bayesian matting on the current frame, based on the propa
gated trimap. Video matting works well if it is just a simple matter of replaying the 
foreground mattes against a different background. However, these foreground mattes 
may not have in-between frame coherence that is needed for generating novel views. 

16.4.2 Coherence matting 

An approach called coherence matting is used to construct the alpha mattes in a co
herent layer that have in-between frame coherence. The workflow of this approach 
is similar to video matting and is illustrated in Figure 16.3. First, the user-specified 
boundaries are propagated across frames. Second, the uncertain region along the 
boundary is determined. Third, the under-segmented background regions from mul
tiple images are combined to construct a sufficient background image. Fourth, the 
alpha matte for the foreground image (in the uncertain region) is estimated. The 
key to this approach is at the fourth step in Figure 16.3(d) where a coherent feath
ering function across the corresponding layer boundaries is introduced. Note that, 
for a given layer, a separate foreground matte is estimated independently for each 
frame in the light field, and the coherence across frames is maintained by foreground 
boundary consistency. 
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(a) (b) (c) (d) 

Fig. 16.3. Illustration of major steps in coherence matting, (a) The user specifies an approxi
mate segmentation, (b) An uncertain region is added in between foreground and background. 
(c) A background mosaic is constructed from multiple undersegmented background images. 
(d) A coherent foreground layer is then constructed using coherent matting. 

L{B) in Equation (16.1) can be dropped, since the background can be expHc-
itly estimated (see Section 16.5.4). By incorporating a coherence prior on the alpha 
channel L{a) across frames, coherence matting can be formulated as 

L{F, B, a\C) = L{C\F, B, a) + L{F) + L{a) 

where the log likelihood for the alpha L{a.) is modelled as: 

(16.2) 

(16.3) 

where OQ = f{d) is a feathering function of d and al is the standard deviation, d 
is the distance from the pixel to the layer boundary. The feathering function f{d) 
define the a value for surrounding pixels of a boundary. In this chapter, the default 
feathering function f{d) = [d/w) * 0.5 + 0.5, where w is feathering width, as 
illustrated in Figure 16.4. It is often used to smooth a hard edge of boundary or 
selection in image composition. 

Assume the observed color C and sampled foreground color F (from a set of 
neighboring foreground pixels) are all of Gaussian distribution: 

L{C\F,B,a) = -\\C~-aF~-{l~a)B\\'^lal 

L{F) = -{F-FfEp\F^F) 

(16.4) 

(16.5) 

where ac is the standard deviation of the observed color C, F is the weighted aver
age of foreground pixels around F and Sp is the weighted covariance matrix. Taking 
the partial derivatives of (16.2) with respect to F and a and forcing them equal to 
zero results in the following equations: 

F 
Ep^F + Ca/al ~ Ba{\ ^ a)/al 

S •p - l a ^ / a ^ c 

{C^B)-{F-B) + ao- Glial 

WF^BW^-Vollal 

(16.6) 

(16.7) 

a and F are solved alternatively by using (16.6) and (16.7). Initially, a is set to QQ. 
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Fig. 16.4. The feathering function in coherence matting. 

16.4.3 Rendering with coherent matting 

Bayesian matting [47] and video matting [46] solve the matting from the equation 

{C^B)-{F~B) 
a \F^B\\^ 

which works well in general but becomes unstable when F w B . In comparison, the 
coherence matting of Equation (16.7) can be solved more stably, because applying 
the coherence prior on a results in a non-zero denominator. The coherence prior 

(••X) 

••if 
Jiiil 
l i i l i 
mmm. 
iSii 

•liiiiis;; 

(b) 

(0 

Video matting 

3 
^ 

L 
,0 "^~~~-. 
- • - ( 

' !<-
. ' - / (e) 

Coherence matting 

Fig. 16.5. Comparison between video matting and coherence matting, (a) is a small window on 
one frame in the Plaza data (Figure 16.11). (b) and (c) are two alpha epipolar plane images (a-
EPI) corresponding to the red line in (a), using the algorithm of video matting and coherence 
matting respectively, (d) and (e) are the alpha curves of two adjacent columns, which are 
marked as blue and red lines in (b) and (c). (d) corresponds to video matting, and shows a large 
jump at i = 13, which causes an accidental transparency within the face, (e) corresponds to 
coherence matting, which provides a more reasonable result. 



Pop-Up Light Field 355 

behaves similar to the smoothness constraint commonly used in visual reconstruction 
(e.g., shape from shading [109]). 

The spatial inconsistency of the alpha matte from video matting can be observed 
in Figure 16.5. The plot of the alpha epipolar plane image (a-EPI) of a video matting 
result is shown. Similar to the conventional EPI [17], for a short segment of scanline 
from the Plaza sequence, the alpha values along this segment are stacked for all of the 
16 frames ((b) and (c)). The alpha values along 2 lines (solid and dotted) in the a-EPI 
are plotted in (d) and (e). Each line represents the alpha values of the corresponding 
pixels across 16 frames. A close inspection of (b) around frame i — 13(video matting 
method), shows that the alpha value changes from about 126 to 0, then to 180, (the 
range of alpha is from 0 to 255) indicating a small part of the face accidently becomes 
transparent. 

The temporal incoherence of the alpha matte from video matting can be more 
problematic during rendering. The fluctuation of alpha values along both dotted and 
solid lines will generate incoherent alpha values and thus cause rendering artifacts 
as the viewpoint is changed (along axis i). Figure 16.5(e) shows the same solid 
and dotted lines with coherent matting results. Both lines have much less fluctuation 
between neighboring pixels, and appear temporally smoother than their counterparts 
in Figure 16.5(d). 

16.5 Pop-up light field construction 

An easy-to-use UI was developed to facilitate the construction of a pop-up light field. 
The user can easily specify, refine and propagate layer boundaries, and indicate ren
dering artifacts. More layers can be popped up and refined until the user is satisfied 
with the rendering quality. 

Fig. 16.6. Flowchart of pop-up light field construction UI. 
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16.5.1 UI operators 

Figure 16.6 summarizes the operations in the pop-up Hght field construction UI. 
The key is that a human is in the loop. The user supplies the information needed for 
layer segmentation, background construction and foreground refinement. By visually 
inspecting the rendering image from the pop-up light field, the user also indicates 
where aliasing occurs and thus which layer needs to be further refined. The user 
input or feedback is automatically propagated across all the frames in the pop-up 
light field. The four steps of operations in the UI are summarized as follows. 

1. Layer pop-up. This step segments layers and specifies their geometries. To start, 
the user selects a key frame in the input light field, specifies regions that need 
to be popped up, and assigns the layer's geometry by either a constant depth 
or a plane equation. This step results in a coarse segmentation represented by a 
polygon. The polygon region and geometry configuration can be automatically 
propagated across frames. Layers should be popped up in order of front to back. 
More details of layer pop-up are shown in section 16.5.3. 

2. Background construction. This step obtains background mosaics that are needed 
to estimate the alpha mattes of foreground layers. Note that the background mo
saic is useful only for the pixels around the foreground boundaries, i.e. in the 
uncertain region as shown in Figure 16.3. More details of background construc
tion are discussed in section 16.5.4. 

3. Foreground refinement. Based on the constructed background layers, this step 
refines the alpha matte of the foreground layer by applying the coherence matting 
algorithm described in section 16.4.2. Unlike layer pop-up in step 1, foreground 
refinement in this step should be performed in back-to-front order. 

4. Rendering feedback. Any modification to the above steps will update the under
lying pop-up light field data. The rendering window will be refreshed with the 
changes as well. By continuously changing the viewpoint the user can inspect for 
rendering artifacts. The user can mark any rendering artifacts such as ghosting 
areas by brushing directly on the rendering window. The corresponding frame 
and layer will then be selected for further refinement. 

16.5.2 UI design 

Figure 16.7 shows the appearance of the UI, including five workspaces where the 
user interacts with a frame and a layer in the pop-up light field. These workspaces 
and their functionalities are explained as follows. 

Lower middle. The user chooses an active frame by clicking on the Frame nav
igator, shown at the lower middle in Figure 16.7. The active frame appears in the 
Editing frame view, shown at the upper left in Figure 16.7. 

Upper left. In the Editing frame view, the user can create or select an active layer 
and edit its polygon region. This active layer is displayed in blue polygons with 
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Fig. 16.7. The UI for Pop-up light field construction. 

See color plate section near center of book. 

crosses for each editable vertex. The information of the active layer is available in 
the Layer navigator, shown at the lower right of Figure 16.7. 

Lower right. From the Layer navigator, the user can obtain the active layer's in
formation. The user can select, add, or delete layers in the list. By selecting the layer 
in the check box, the user can turn on/off a layer's display in the Editing frame view. 
Reference frame view (shown at the upper right of Figure 16.7) and the rendering 
window . The plane equation of the active layer is displayed and can be modified 
through keyboard input. Layer equations can also be set through adjusting the ren
dering quality in the rendering window. 

Upper right. The Reference frame view is used to display another frame in the light 
field. This workspace is useful for a number of operations where correspondences 
between the reference frame view and the editing frame view need to be considered, 
such as specifying plane equations. 

Lower left. To fine tune the polygon location for the active layer, the Boundary 
monitor (lower left of Figure 16.7) shows close-up views of multiple frames in the 
light field. The first row shows the close-up around the moving vertex. The second 
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and third rows show the foreground and background of the active layer composed 
with a fixed background selected by the user. For instance, using mono fuchsia color 
in Figure 16.7 as the background, it is easy for the user to observe over-segmentation 
or under-segmentation of the foreground across multiple frames simultaneously. 

Not shown in the figure is the rendering window on which the user can render 
any novel view in real time and can inspect the rendering quality. The user can also 
specify the frontal plane's equation for an active layer by sliding the plane depth back 
and forth until the best rendering quality (i.e., minimum ghosting) is achieved. If the 
ghosting cannot be completely eliminated at the occlusion boundaries, the layer's 
polygon must be fine tuned. The user can brush on the ghosting regions, and the 
system can automatically select the affected frame and layer for modification. The 
affected layer is front-most and closest to the specified ghosting region. 

To specify the slant plane equation for a layer, the user needs to select at least 
four pairs of corresponding points on the Editing frame view and the Reference frame 
view. The plane equation can be automatically computed and then used for rendering. 

Also not shown in the above figure is a dialog box where the user can specify the 
feathering function. Specifying a feathering curve is useful for the coherence matting 
algorithm described in section 16.4.2. 

16.5.3 Layer pop-up 

To pop up a layer, the user needs to segment and specify the geometry of the layer 
for all frames in the light field. This section discusses the operations by which the 
user interacts with the system and the underlying algorithms. 

16.5.3.1 Layer initialization 

Polygons are used to represent layer boundaries, since the correspondence between 
polygons can be maintained well in all frames by the corresponding vertices. The 
user can specify the layer's boundary with a polygon (e.g., using the polygon lasso 
tool in Adobe Photoshop) and edit the polygon by dragging the vertices. The editing 
will be immediately reflected in the Boundary monitor window and in the rendering 
window (section 16.5.2). 

First of all, the user needs to inspect the rendering window by changing the view
point and decide which region is going to be popped up (usually the front-most non-
ghosting object). The user then selects a proper key frame to work with and draws a 
polygon on the frame. 

Then, the user needs to specify the layer's geometry. For a frontal plane, the layer 
depth is the one that achieves the best rendering quality which can be observed on 
the rendering window by the user. For a slant plane, the user specifies at least four 
pairs of corresponding points on at least two frames to estimate the plane equation. 

Once the layer geometry is decided, the polygon on the first key frame can be 
propagated to all other frames by back projecting its vertices, resulting in a coarse 
segmentation of the layer on all frames in the light field. All vertices on the key 
frame are marked as key points. At this stage, the layer has a global geometry which 
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is shared across all the frames. Moreover, an accurate polygon boundary for layer 
initialization is not necessary. Because of occlusions and viewpoint changes, propa
gated polygon boundaries inevitably need to be refined. 

16.5.3.2 Layer refinement 

The following aspects need to be considered in layer refinement. 

Boundary refinement in a key frame All vertices on any frame can be added, 
deleted and moved. Once a vertex is modified, it is marked as a key point. The po
sition of the modified vertex will be propagated across frames at once and the layer 
region will be updated in several UI workspaces. To adjust a vertex position, the user 
can observe how well foreground and background colors are separated in the Bound
ary monitor window, or how much the ghosting effect is removed in the rendering 
window. 

Boundary propagation across multiple frames For a specific vertex on the 
layer boundary, if it is marked as a key point on only one frame in the light field, the 
position of this vertex on any other frame is computed by back projecting the point 
based on the layer geometry. When a vertex is marked as key points on two or more 
frames by the user, however, the positions of this vertex on other frames must be 
computed by interpolating the back projections of these key points. The coordinate 
of non-key point is interpolated from key points using following schemes: 

For the ID image array, the two corresponding key points immediately to the 
left and right of each non-key point are selected. The coordinate of this non-key 
point is obtained by back-projecting the 3D point, via triangulating the two selected 
key points. For a 2D image array, the selection should proceed with care because 
interpolation is preferred over extrapolation. The back-projected point for the non-
key points should change smoothly when the user edits the key point smoothly. The 
back-projected point for each non-key point is computed as follows: (1) compute the 
Delaunay triangulation of all key points. (2) for each non-key point in the interior 
of a triangle, run a 3-point back-projection algorithm by using three vertices of the 
triangle, e.g. non-key point h is interpolated from the key points A, B and D as 
illustrated in Figure 16.8; (3) for each non-key point P in the exterior of all triangles, 
select two key points PQ and Pi that maximize the angle Z P Q P P I , e.g. non-key point 
a is interpolated from the key points A and D, c is interpolated from the key points 
A and C in Figure 16.8. 

Note that not all vertices in a key frame are key points. Key points can also exist 
in non-key-frames. If a key point is marked later as a non-key-point, its position 
needs to be interpolated by its corresponding key points from other frames. 

Coherence matting It is difficult to accurately describe a layer boundary simply 
using polygons. It is hard for the user to manually adjust to sub pixel accuracy a 
boundary with subde micro geometry. A pixel is often blended with colors from both 
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Fig. 16.8. Propagate information from key points to non-key points in 2D image arrary. The 
solid (yellow) points are key points and hollow (red) points are non-key points. 

foreground and background due to the camera's point spread function. Therefore, the 
interface was designed to be tolerant and not require the user to specify very accurate 
sub-pixel boundary positions. Instead, an coherence matting algorithm is applied to 
further refine the layer boundary. Polygon editing (in a frame and across frames) and 
coherence matting can be alternatively performed with assistance from the user. 

Local geometry When the viewpoint changes significantly, a single planar 
geometry may not be sufficient to achieve anti-aliased rendering. The system uses 
a local geometry representation, with an example shown in Figure 16.13. This repre
sentation allows each key frame to have its own planar equation, and interpolate the 
planar equation for the layer on any intermediate non-key-frames. 

16.5.4 Constructing background 

The algorithm of coherence matting in section 16.4.2 assumes that the background 
for the uncertain regions (where matting is estimated) is known. A key observation 
is that because the uncertain regions are located around foreground boundaries, they 
can only appear on neighboring frames in the light field where these regions are 
disoccluded. The background reconstruction algorithm fills the disoccluded region 
using (warped) pixels from neighboring frames. 

Once the foreground is popped up, the background image can be obtained by re
moving the foreground image as shown in Figure 16.9(a). Moreover, the background 
boundary is eroded by a few pixels (typically two pixels) before constructing the 
background mosaic because a possible under-segmentation of the foreground may 
leave some mixed foreground pixels on the background around boundaries. 

An automatic algorithm is designed to construct the background, which warps 
the neighboring images to fill the holes using the background layer's geometry. This 
method works well if the the background is well approximated by plane, e.g. in 
Figure 16.1. 

However, if the background contains objects with relatively large depth variation, 
the background layer would need to be further subdivided into sub-layers, each of 
which being represented as a plane. As shown in Figure 16.9(a), a background layer 
is segmented manually into four sub-layers using polygons. This time, the location 
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Fig. 16.9. (a) The background mosaic operator uses the polygon lasso operator to segment 
the layer into regions, (b) The resulting background mosaic fills in many missing pixels in 
(a). Although (b) still has many missing pixels, it is enough for coherence matting of the 
foreground. 

of the polygon is not critical. Instead, the criterion here is to group the background 
boundaries into a better planar approximation. 

The sub-layers are propagated from the key frame, where the user specifies the 
division, to all other frames using the existing background layer geometry. This prop
agation requires less accuracy as long as it covers the same group of boundaries. The 
relative motion of the sub-layer across frames is estimated hierarchically, starting 
from translation to affine, and from affine to perspective transform [291]. Only the 
pixels visible in both frames are used to estimate parameters. Figure 16.9(b) shows 
the resulting mosaic. Note that a hole-free mosaic is not required, as a few pixels 
surrounding the occlusion boundaries are adequate for coherence matting. 

16.6 Real-time rendering of pop-up light field 

An integral part of the UI is the real-time pop-up light field Tenderer which provides 
the user instant feedback on the rendering quality. The renderer was based on pre
vious light field and Lumigraph rendering systems [22, 91 , 116]. The pop-up light 
field rendering algorithm consists of three steps: (1) splitting a light field into layers, 
(2) rendering layers in back-to-front order, and (3) combining the layers. 

16.6.1 Data structure 

The data structure used in the rendering algorithm is shown below. 
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struct PopupLightField { 
Array <CameraParameter> 
Array <Layer> layers; 

}; 
struct Layer { 

Array <Plane> equations; 
Array < Image > images; 

}; 
struct Image { 

BoundingBox box; 
Array2D<RGBA> pixels; 

}; 

The pop-up light field keeps the camera parameters associated with all the input 
frames. Each layer in the pop-up light field has corresponding layered images, one 
for each frame. Each layered image has a corresponding plane equation, so as to 
represent the local geometry. If global geometry is applied to a layer, all equations 
are the same for images in this layer. 

Since these corresponding layered images vary their shapes in different views, 
they are stored as an array of images on each layer. Layers can be overlapping in the 
pop-up light field and each layered image is modified independently by mosaicing 
and coherent matting. Therefore it is necessary to keep both color and opacity of 
images for each layer separately. Each layered image is stored as an RGBA texture 
image of the foreground colors with its opacity map, and a bounding box as well. The 
opacity (alpha value) of the pixel is zero when this pixel is out of the foreground. 

16.6.2 Layered rendering algorithm 

The scene is rendered layer by layer using texture-mapped triangles in back-to-front 
order. Then the layers are sequentially combined by alpha blending. The rendering 
scheme is based on [22,106] but extended to multiple layers. The pseudocode of the 
rendering algorithm is shown below. 

ClearFrameBuffcrO 
T <—CreateRenderingPrimitivesO 
for all layers Layer from back to front do 

for all triangles A G T do 
SetupProjectiveTextureMapping(A) 
Render(A) 
BlendToFrameBuffer( A) 

end for 
end for 

After initializing a frame buffer, a set of triangular polygons are then gener
ated, on which the original images are blended and drawn. The camera positions are 
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first projected onto the image plane; these projected points together with the image 
plane's four corner points are subsequently triangulated. 

image plane 

polygon 

• : ' ' ^ p . 
viewpoint "'"-

layer 

Fig. 16.10. Set-up of projective texture mapping 

Then a triple of texture images {h]i^i are assigned to each triangle, which are 
blended across the triangle when rendering. The blending ratio {ixif }|^j (0 < wf < 
I 'Sfc^si^i^ = 1) for three images are also assigned to each of the three vertices, and 
linearly interpolated across the triangle. The exact blending ratio based on ray angles 
is not necessarily distributed linearly on the screen. If the size of a triangle is not 
small enough with respect to the screen size, the triangle is iteratively subdivided into 
four triangles. On the vertex which is the projection of an /^'s camera, the blending 
ratio wf is calculated using the following equation. 

w^=\ if camera i is projected onto the fc-th vertex 

= 0 otherwise 

For the vertex which is not the projection of a camera, the weights are calculated us
ing the angle between the ray through the camera and the ray through the vertex [22]. 

Then, each layer is rendered by blending texture images {/,} using blending 
ratios {u)f}. At the point other than the vertices on the triangle, the blending ratios 
{vi) are calculated by interpolating {u'f }f,= i. Using {/j} and {vi}, the pixels on the 
triangle are drawn in the color Xli=i ^i^i-

The texture images are mapped onto each triangle projectively as illustrated in 
Figure 16.10. Let Pview be the projection matrix for the rendering camera (to produce 
the novel view). Pi be the projection matrix for the camera corresponding to 7^, and 
Hiayer bc a planar homography from the triangle to the layer plane. Then, the texture 
image /^ is mapped onto the triangle using a projection matrix PiHiayer-

16.6.3 Hardware implementation 

Light field rendering can be accelerated using graphics hardware. Although several 
hardware-accelerated light field rendering approaches have been proposed [22, 91, 
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Table 16.1. Rendering performance (FPS = frames per second). 

Data 

Tsukuba 
Piaza 

Pokemon 
Fur 

Statuette 

Resolution 
(w X h X #cameras) 

384 X 288 X 25 
640 X 486 X 16 
512 X 384 X 81 
1136 X 852 X 23 
1136 X 852 X 43 

Original LP 
(MB) 

8.3 
14.9 
47.8 
66.8 
124.8 

Pop-up LP 
(MB [#layers]) 

19.4 [5] 
38.3 [16] 
117.8 [5] 
140.4 [5] 
161.2 [4] 

FPS 

62.5 
58.8 
31.3 
46.9 
37.1 

106, 116], they cannot be used directly for pop-up light field rendering. In these pre
vious approaches, texture images are blended by multi-pass rendering of triangles 
and alpha-blending them in the frame buffer. In a layered rendering algorithm, lay
ers must be alpha-blended using the alpha values assigned in texture images, which 
means each layer must be rendered onto the frame buffer in a single pass. 

One straightforward way would be to copy the frame buffer into memory and 
composite them after rendering each layer. Unfortunately, this is too slow for inter
active use. Instead, a single pass rendering method is used; it involves multitexture 
mapping and programmable texture blending, which is available on modern graphics 
hardware. 

In order to blend all textures on a single triangle, we first bind three different tex
tures assigned to each triangle, then assign three blending ratios {wi, W2,ws} as the 
primary color { R,G,B } on each vertex. The primary color is smoothly interpolated 
on the triangle. Hence the interpolated blending ratios {vi} are obtained simply by 
referring to the primary color at an arbitrary point on the triangle. Then the texture 
images on the triangle can be blended using the blending equation programmed in 
the pixel shader in graphics hardware. 

The layers can be composed simply by alpha-blending each triangle on the frame 
buffer when it is rendered because the triangles are arranged without overlap in a 
layer and each triangle is drawn in a single pass. 

The rendering system has been implemented using OpenGL and its extensions 
for multi-texturing and per-pixel shading, and tested on a PC (CPU 660 MHz, mem
ory 768 MB) equipped with an NVidia GeForce4 or ATI Radeon9700 graphics card 
with 128MB of graphics memory. The performance of rendering is shown in Ta
ble 16.1. 

16.7 Experimental results 

This section shows the result of constructing several pop-up light fields from real 
scenes. The "Tsukuba" data set and the "Plaza" sequence are courtesy of Prof. Ohta 
of University of Tsukuba, and Dayton Taylor, respectively. "Pokemon" data is cap
tured by a computer-controlled vertical X-Y table in a lab. Data sets of "Statuette" 
(with unstructured camera motion) and "Furry toys" (with the camera moving along 
a line) are captured by a Canon G2 Digital Camera. 
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Fig. 16.11. Result of pop-up light field rendering of the Plaza sequence rendered from a novel 
viewpoint (in the position midway between the 11th and 12th frames). The input consists of 
only 16 images. Sixteen layers are used to model the pop-up light field. 

> » • • • • 

one focal plane in the front one focal plane at the back 5 layers are popped up 

Fig. 16.12. Results on Pokemon 9 x 9 : comparison of conventional light field rendering and 
pop-up light field rendering. 

See color plate section near center of book. 

As shown in Table 16.1, rendering of all the pop-up light fields can be done in 
real-time (with a frame rate greater than 30 fps). Table 16.2 summarizes the amount 
of work required to construct these pop-up light fields. For most scenes in the ex
periments, it takes a couple of hours for a graphics graduate student to interactively 
model the pop-up light field. It, however, took the student 5 hours to construct the 
pop-up light field from the Plaza sequence where 16 layers are segmented. 
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(a) (c) 

Fig. 16.13. Results on sparse images taken with unstructured camera positions, (a) The global 
planar surface is set as a frontal-parallel plane in this view, (b) rendering result from another 
view with the global plane, (c) rendering result from the same view of (b) with local geometry. 

See color plate section near center of book. 

Fig. 16.14. Comparison of results on furry rabbit, with video matting (iniddle image) and with 
coherence matting (right image). The alpha matte from coherent matting is smoother than that 
from video matting in the rendering image. 

See color plate section near center of book. 

Tsukuba. Some rendering results of the Tsukuba 5 x 5 light field are shown in Fig
ure 16.1. It is demonstrated that with 4 layers, anti-aliased rendering can be achieved. 
The same rendering quality can be achieved with 7 layers if the light field is down-
sampled to 3 X 3. 

Pokemon. Figure 16.12 again demonstrates the progressive improvement of visual 
quality when more layers are popped up. With 5 layers, anti-aliased rendering of 

Table 16.2. User 

Data 

# frame 
#layer 

points/frame 
key points/frame 

Time (hours) 

Tsukuba 

25 
4 

129 
6,3 

« 0 . 5 

interaction statistics. 

Plaza 

16 
16 

379 
62.4 
R i 4 

Pokemon 

81 
5 

90 
8.6 
^ 1 

Fur 

23 
5 

167 
16.1 
^ 1 

Statuette 

43 
4 

47 
12.3 

^ 1.5 



Pop-Up Light Field 367 

pop-up light fields (Pokemon 9 x 9) is achieved. The four layers that model the three 
toys and the background use frontal-parallel planes while the table plane is slanted. 

Statuette. For complicated scenes, instead of using a global planar surface defined 
in the world coordinate system, local geometry should be used. Figure 16.13 shows 
the rendering result from a sequence of 42 images taken with unstructured camera 
motion. If a global planar surface is set as a frontal-parallel plane in the frame (Fig
ure 16.13(a)), rendering at a very different viewpoint will have noticeable artifacts, 
as shown in Figure 16.13(b). Figure 16.13(c) shows a good rendering result using 
view-dependent geometry. Specifically, the plane orientations are changed for differ
ent views. 

Furry rabbit. A sparse light field of a furry toy rabbit (23 images with the camera 
path along a line) is used to show the efficacy of coherence matting. Figure 16.14 
compares the results with video matting and with coherence matting. The zoomed 
up views of the left ear demonstrate that coherence matting obtains a more consistent 
matte than video matting. 

Plaza. Figure 16.11 shows an aliasing-free novel view rendered using the pop-up 
light field constructed from the Plaza sequence, which is a collection of only 16 
images. The sequence was captured by a series of "time-fro/en cameras" arranged 
along a line or curve. Because the scene is very complex, stereo reconstruction is 
very difficult. Note that nearly perfect matting is achieved for the floating papers in 
the air. The boundaries for the foreground characters are visually acceptable, made 
possible mainly by the coherent layers produced by coherence matting. 

16.8 Discussion 

In a way, coherence matting is similar to prefiltering the alpha channel in the fore
ground layer. It was suggested in [160, 33] that prefiltering can be used to reduce 
aliasing, at the expense of lower rendering resolution. With coherence matting, pre
filtering the entire light field is unnecessary. It is adequate to prefilter only occlusion 
boundaries. 

Moreover, background and foreground layers are handled differently in a pop-up 
light field. Because we have multiple images, we can construct a complete back
ground mosaic from under-segmented background layers. For the foreground image, 
the pixels around the boundary are "prefiltered" (by coherence matting) before ren
dering. The rendering artifact is that the boundary of the foreground image is slightly 
blurred. 

The pop-up light field is based on sparse light field input. It is unable to handle 
specular highlights and other significant appearance changes. Moreover, coherent 
matting does not work well for semi-transparent surfaces and long hairs because 
the prior L{a) used in the formulation is approximately modeled as a point spread 
function. 
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16.9 Concluding remarks 

The system described in this chapter was inspired by the real-time 3D model ac
quisition system of [248J, in which the user specifies areas that need to be modeled 
depending on the current merge model from multiple scans. Though the goal and 
methodology are very different, the key concept in the pop-up light field system is 
similar: the user is in the modeling loop and specifies, through a real-time pop-up 
light field renderer, where aliasing occurs and how the scene should be further mod
eled. 

Another motivation stems from the difficulty of recovering accurate per-pixel 
depth using stereo or other vision techniques. The pop-up light field is an image-
based modeling technique that does not rely on accurate 3D depth/surface recon
struction. Rather, it is based on accurate layer extraction/segmentation in the light 
field images. In a way, it trades the difficult correspondence problem in 3D recon
struction for another equally difficult segmentation problem. However, it is much 
easier for a user to specify accurate contours in images than accurate depth for each 
pixel. 



17 

Feature-Based Light Field Morphing 

In the previous three chapters, we described systems that renders static scenes in their 
own unique ways. One system focuses on the reduction of data while maintaining 
the quahty of the viewing experience (Chapter 14), another involves customizing 
viewer experience for large scenes (Chapter 15), and the third requires some user 
interaction to overcome the difficult segmentation process (Chapter 16). However, 
all these systems result in visualization of the captured scene—they do not show 
how captured data can be edited to create new content. 

How does one edit a light field? In this chapter, we describe a feature-based tech
nique for morphing 3D objects represented by light fields. This technique enables 
morphing of image-based objects whose geometry and surface properties are too 
difficult to model with traditional vision and graphics techniques. Light field morph
ing is not based on 3D reconstruction; instead it relies on ray correspondence, i.e., 
the correspondence between rays of the source and target light fields. We address 
two main issues in light field morphing: feature specification and visibility changes. 

An intuitive and easy-to-use user interface (UI) was developed for feature spec
ification. The key to this UI is feature polygons, which are intuitively specified as 
3D polygons and are used as a control mechanism for ray correspondence in the ab
stract 4D ray space. Ray-space warping is used to handle visibility changes due to 
object shape changes. It is capable of filling arbitrarily large holes caused by object 
shape changes; these holes are usually too large to be properly handled by traditional 
image warping. The light field method can deal with non-Lambertian surfaces, in
cluding specular surfaces (with dense light fields). This capability allows convincing 
3D morphing effects to be generated. 

17.1 The morphing problem 

Metamorphosis, or morphing, is a popular technique for visual effects. When used 
effectively, morphing can give a compelling illusion that an object is smoothly trans
forming into another. Following the success of image morphing [12, 321], graphics 
researchers have developed a variety of techniques for morphing 3D objects [152, 
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Fig. 17.1. Light field morphing: A 3D morphing sequence from a furry toy cat (real object) to 
the Stanford bunny (synthetic object). 

89]. These techniques are designed for geometry-based objects, i.e., objects whose 
geometry and surface properties are known, either explicitly as for boundary-based 
techniques (e.g., [144, 62, 153]) or implicitly as for volume-based techniques (e.g., 
[112,157,49]). 

In this chapter, we describe a feature-based morphing technique for 3D objects 
represented by light fields [160] or Lumigraphs [91]. Unlike traditional graphics ren
dering, light field rendering generates novel views direcdy from images; no knowl
edge about object geometry or surface properties is assumed [160]. Light field mor
phing thus enables morphing between image-based objects, whose geometry and sur
face properties, including surface reflectance, hypertexture, and subsurface scattering 
[67], may be unknown or difficult to model with traditional graphics techniques. 

The light field morphing problem can be stated as follows: Given the source 
and target light fields LQ and Li representing objects OQ and Oi, construct a set of 
intermediate light fields {La | 0 < a < 1} that smoothly transforms LQ into L i , 
with each La representing a plausible object Oa having the essential features of OQ 
and Oi. The intermediate light field La is called a light field morph, or simply a 
morph. 

A naive approach to light field morphing is to apply image morphing to individual 
images in the source and target light fields and assemble the light field morphs from 
the intermediate images of image morphing. Unfortunately, this approach will fail for 
a fundamental reason: light field morphing is a 3D morphing and image morphing 
is not. This difference manifests itself when a hidden part of the morphing object 
becomes visible because of object shape change, as image morphing will produce 
"ghosting" that betrays a compelling 3D morphing. 

The plenoptic editing proposed by Seitz and Kutulakos [262] represents another 
approach to image-based 3D morphing. They first recover a 3D voxel model from 
the image data and then apply traditional 3D warping to the recovered model. The 
visibility issues can be resolved with the recovered geometry, but there are problems, 
including the Lambertian surface assumption needed for voxel carving [262] and the 
difficulties with recovering detailed geometry. Most of the problems are related to 
the fundamental difficulties of recovering surface geometry from images [72]. 

Light field morphing is an image-based 3D morphing technique that is not based 
on 3D surface reconstruction. The basis of light field morphing is ray correspon
dence, i.e., the correspondence between rays of the source and target light fields 
[160]. The role of ray correspondence in light field morphing is the similar to that of 
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Fig. 17.2. Overview of light field morphing. The overall pipeline is illustrated in the upper 
part, whereas the warping of a light field is detailed in the lower part. 

vertex correspondence in geometry-based 3D morphing [152, 153]. Like vertex cor
respondence (e.g., see [62, 95]), ray correspondence is controlled by user-specified 
feature elements. 

A key issue in light field morphing is thus the construction of a user interface (UI) 
for specifying feature elements. Since there is no intrinsic solution to a morphing 
problem, user interaction is essential to the success of any morphing system [157, 
321, 152]. For light field morphing, the main challenge is the design of intuitive 
feature elements for an abstract 4D ray space [160]. To address this challengc/eafwre 
polygons are introduced as the central feature elements for light field morphing. As 
3D polygons, feature polygons are intuitive to specify. More importantly, feature 
polygons partition a light field into groups of rays. The rays associated with a feature 
polygon P constitute a ray bundle, and the ray correspondence of this ray bundle 
is controlled by the control primitives of the feature polygon P. Note that feature 
polygons do not make a rough geometry of the underlying object; they are needed 
only at places where visibility changes (due to object shape change). 

Another key issue in light field morphing, and more generally in image-based 
3D morphing, is visibility change. Two types of visibility change exist. The first is 
due to viewpoint changes. In light field morphing, this type of visibility change is 
automatically taken care of by the input light fields. The second type of visibility 
change is that caused by object shape changes, which must be handled. For a given 
view, a hole is created when a hidden surface patch in the source light field LQ be
comes visible in the target light field Lj due to object shape change. This type of 
hole may be arbitrarily large and thus cannot be dealt with properly by traditional 
image warping methods (e.g., [40, 260]). This problem is handled using a technique 
called ray-space warping, which is inspired by Beier and Neely's image warping 
[12]. With ray-space warping, a hole can be filled by approximating an occluded ray 
with the "nearest visible ray." Not surprisingly, ray-space warping requires visibility 



372 Image-Based Rendering 

processing and the key to visibility processing is the global visibility map, which 
associates each light field ray with a feature polygon. 

Ray-space warping produces accurate results under the popular Lambertian sur
face assumption [40, 260]. For non-Lambertian surfaces, ray-space warping tries 
to minimize the errors by using the "nearest visible rays." Unlike plenoptic editing 
[262], non-Lambertian surfaces, including specular surfaces, can be handled. 

Light field morphing is easy to use and flexible. Feature specification usually 
takes about 20 to 30 minutes and sparse light fields can be used as input to save 
storage and computation. When the input light fields are very sparse (e.g., 2 to 3 
images per light field), light field morphing is termed key-frame morphing to em
phasize its similarity with image morphing. Key-frame morphing may be regarded 
as a generalization of view morphing [260] because key-frame morphing allows the 
user to add more input images as needed to eliminate the holes caused by visibil
ity changes. Note that although view morphing can generate morphing sequences 
that appear strikingly 3D, it is not a general scheme for image-based 3D morphing 
because the viewpoint is restricted to move along a prescribed line. 

In this chapter, we show results for a few applications of light field morph
ing, including generating 3D morphs for interactive viewing, creating animation se
quences of a 3D morphing observed by a camera moving along an arbitrary path 
in 3D, key-frame morphing, and transferring textures from one 3D object to an
other. In addition, we show how an animation sequence of a 3D morphing can be 
efficiently computed without fully evaluating all the morphs. The techniques we 
present can be used as visualization tools for illustration/education purposes [13], 
in the entertainment industry, and for warping/sculpting image-based objects [159, 
262]. 

The rest of the chapter is organized as follows. In Section 17.2, we give an 
overview of the light field morphing system. Secfion 17.3 describes the specifica
tion of feature elements, in particular feature polygons, and visibility processing. 
Section 17.4 presents the warping algorithms for warping a light field and for gen
erating 3D animation sequences. Experimental results are reported in Section 17.5, 
followed by discussion and concluding remarks in Sections 17.6 and 17.7. 

17.2 Overview 

As shown in Figure 17.2, the light field morphing system has two main components. 
The first is a UI for specifying feature element pairs through side-by-side interactive 
displays of the source and target light fields. Three types of feature elements are used: 
feature lines, feature polygons, and background edges. The second component is a 
morphing unit that automatically computes the morph L„ for a given a through the 
following steps. First, the feature elements of LQ. are obtained by linearly interpolat
ing those of LQ and L i . Second, Lo and Li are warped to Lo and Li respectively for 
feature alignment. Finally, La is obtained by linearly interpolating the warped light 
fields Lo and L i . Of these steps, both the first and last steps are simple; the warping 
step is the main part of the second component. 



Feature-Based Light Field Morphing 373 

-; 

'.'. 
, 

-
' 

-. 

• ^ 

° \ ^ 

- " . • - -

. .•:•:• 

." ••"•"• 

"..'.'.' 

••:™'0:^:^'^":f::'^ 
• . - • . 1 

:.::•,••:!.',', • : • : • 

:..."!:.:-"w 
vvAA?:v;:;AA:(vy. 

...•.•..J," •....:.\;,,y 

••-•;' i. 'iv!i!v> 

. _ 

k 

IK 

1 

• 'i-{(^. !.•::..::•• 
: 1.-; a...:;>.:;•• 

• •, ':.i-;t.\::-;:.:v.-\ 
YrtttiYiy:.::.-
•••t:jiW//.•.:•• 

i.V.Y./.V.V.V.T 

/.yrtfiivr.iii:.-, 

:.;i..y(:tr:.:;....-i 

,-f/;j.:vt;j,w/t.\;:'. 

• l .V.V/.Ti .V. / .ViV.i" 

•,,-::i!..•::..."::.::: 
• • 1 1 • • • • 1 1 • a^ • 1 

1 . . 1 _ . . l"! . !i 1 . . 1 ! _ . . 1 

1 1 . 

••:. . ' • • : : ' : ^ ^^^ i ^v : i ^ : 

.•.•.if.iVi.vr.t'rt.v.V'/.v • 

:;:::o:S:?¥S:??f-v?' 
..:i:-({i.vi.-:.v:." " 

. • . • ' . • . • . • . • . • • • . • • i V i / . - . •• 

. • . • . • . - . • . • . • . • . • . - . • . • . L V . - . - . - . - . . - . ; 

.\iri(ii<.yiii<T({i.i": 

...•"•:..:..-::..\,"!i.:..-{:s: 

•S^^vvviOivvvS'̂ vvSivv', 
.'.'. '.v I'.'.'i '.v I'sV. v: I'.'.'i '.v \'J 

' . ; • • . ' . • ." . • . . • . .v . . ' . . .v . ' . ' . ' .^ V . 

" • ^ • ^ :G ; ^ ' 7X -

. . .;_. 

v.Vivr.rt'./.v .\ 

; : : : • > : " : : , ; : . : 

• M:^}P 

' ^ / " • • i v : : " ' • 

'\\\-!iry.\^\\ • 
"'WW.' 

I'l'ivv)!:':-:':':.,' 

T ; .•.•_•.•."• • • - • • " 

r.'.'.wwitW 

1 

Fig. 17.3. The user interface for feature specification. On the top, windows (1) and (2) are 
interactive renderings of the source and target light fields. Three pairs of feature polygons 
are drawn using wireframe rendering (white lines) on top of the source and target objects. 
The background edges are drawn as yellow polylines. On the bottom, windows (3) and (6) 
are interactive renderings of the global visibility maps, showing the visibility of the feature 
polygons using color-coded polygons. Windows (4) and (5) display the (s, i)-plancs of the 
two light fields, with each yellow dot representing a key view used for specifying background 
edges. 

The two most important operations in light field morphing are feature specifica
tion and visibility processing. The key to feature specification is the feature polygons, 
which are 3D (non-planar) polygons approximating surface patches of 3D objects. 
The key to visibility processing is the global visibility map, which associates each 
ray of a light field L with a feature polygon of L. 

The critical roles of feature polygons and global visibility maps in the warping 
of a light field L are illustrated in the lower part of Figure 17.2. The global visibility 
map of L can be computed from the user-specified feature polygons of L. The global 
visibility map partitions L into ray bundles such that each feature polygon P is as
sociated with a ray bundle R{P). Light field warping is then performed by warping 
one ray bundle at a time using ray-space warping, with the ray correspondence of a 
ray bundle R{P) determined by P ' s control primitives. 

Feature polygons are only needed where visibility changes. Rays not in any ray 
bundle are called background rays, which can be easily treated by image warping 
because there is no visibility change involved. 

Following the Lumigraph [91] convention (Chapter 2), the (u,i;)-plane is the 
image (focal) plane and the (s,t)-plane the camera plane. For a given light field 
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L, L can be thought of as either a collection of images {L(, j)} or a set of rays 
{L{u, V, s, t)}. An image L^^g^^to) is also called a view of the light field L. In L(,,Q_tg), 
the pixel at position {uo,Vo) is denoted as -̂ (sĝ tg) (MQ, VQ), which is equivalent to ray 
L{uo,vo,so,to)-

17.3 Features and visibility 

In feature-based morphing [89], the corresponding features of the source and target 
objects are identified by a pair of feature elements. In this section, we show how to 
specify such feature element pairs when the source and target objects are described 
by light fields. We also describe visibility processing using feature polygons. 

17.3.1 Feature specification 

The user specifies feature element pairs using the UI shown in Figure 17.3. Three 
types of feature elements are used: feature lines, feature polygons, and background 
edges. 

Feature lines. A feature line is a 3D line segment connecting two points called 
its vertices, which are also called feature points. The purpose of a feature line is to 
approximate a curve on the surface of a 3D object. The user specifies a feature line 
E by identifying the pixel locations of its vertices. Once E is specified, the system 
displays E on top of the interactive rendering of the light field. 

To determine the 3D position of a vertex v, geometry-guided manual correspon
dence is used: the user manually identifies projections pi(v) and P2(v) of v in two 
different views L(5j j^) and '̂(sa.ta) under the guidance of epipolar geometry [72]. 
After the user specifies Pi(v) in view Ljj^^j), the epipolar fine of pi(v) is drawn 
in view jf̂ (s2,t2) as a guide for specifying P2(v) since P2(v) must be on the epipolar 
line of pi(v). Because the camera parameters of both views are known, calculating 
V from pi(v) and P2(v) is straightforward. 

Feature polygons. A feature polygon P is a 3D polygon defined by n feature lines 
{E^,..., £ " } , which are called the edges of P. P has control primitives {E^, ..., 
£nn+fc| ĵjij;}^ includes both the edges of P and supplementary feature lines {i?"+^, 
..., iJ"+'=} for additional control inside the feature polygon. The purpose of a feature 
polygon is to approximate a surface patch of a 3D object. In general, P is allowed to 
be non-planar so that it can approximate a large surface patch as long as the surface 
patch is relatively flat. 

To specify a feature polygon, the user draws a series of connected feature lines 
(two consecutive lines sharing a vertex) in counterclockwise order in the interactive 
display of a light field. A technical difficulty in the specification process is that, be
cause light field rendering does not perform visible surface computation, all vertices 
are visible in every view. Fortunately, the user can easily distinguish vertices on visi
ble surfaces from those on hidden surfaces, for two reasons. First, there are relatively 
few vertices and a vertex on the visible surface can be identified by the landmark it 
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labels. More importantly, the interactive display gives different motion parallax to 
visible vertices in the front and invisible ones in the back. 

To ensure that the patches are well approximated by feature polygons, the geom
etry of the patches is restricted. More specifically, for a surface patch S approximated 
by a feature polygon P, S is required to have no self-occlusion and be relatively flat. 
S is split if either requirement is not met. By requiring S to have no self-occlusion, 
self-occlusion in P can be avoided if it is a sufficiently close approximation of S. For 
such a P, we only have to check occlusion caused by other feature polygons during 
visibility processing. Note that whether S satisfies the two conditions is solely judged 
within the viewing range of L. For example, consider any one of the faces in Fig
ure 17.3. The surface patch approximated by a feature polygon has no self-occlusion 
for the viewing range of the light field shown. However, when the viewpoint moves 
beyond the viewing range of this light field, e.g., to the side of the face, the nose will 
cause self-occlusion within the surface patch. 

Background edges. Background edges are introduced to control rays that do not 
belong to any feature polygons. These rays exist for two reasons. First, feature poly
gons only roughly approximate surface patches of a 3D object. In each light field 
view, rays near the object silhouette may not be covered by the projection of any 
feature polygons. Second, parts of the object surface may not be affected by the vis
ibility change caused by object shape change. There is no need to specify feature 
polygons for the corresponding rays. 

For rays that do not belong to any feature polygons, they are controlled with 
background edges, which are 2D image edges specified by the user. Background 
edges play the same role as the feature edges in image morphing [12]. A series of 
connected background edges form a background polyline. As shown in Figure 17.3, 
a background polyline is manually specified in a few key views and interpolated into 
other views by linear interpolation. 

Feature 
'' Palvgon P\ 

^vHTTP 
i 

Ra\ Bundle 
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Fig. 17.4. Left: Example of ray bundles in a light field with three cameras. The rays associated 
with a feature polygon Pi across all views of the light field constitute ray bundle R{Pi). In 
this example, R{Pi) includes all pink rays but not the green rays. Right: Example of nearest 
visible rays in a Hght field with three cameras. Occluded ray CiB (pink) is replaced by C2B 
(pink), while CiA is replaced by C3A. 
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17.3.2 Global visibility map 

After specifying all feature elements of a light field L, the global visibility map (or 
visibility map for short) of L can be defined as follows: 

Definition 1 The global visibility map of a light field L with feature polygons 
{Pi, •••,Pn. } ''̂  a mapping V : L -^ N from the ray space L to the set of inte
gers N such that 

. +̂  ^ / * '/'"'̂ >' •^('"i '''i '̂ i t) belongs to Pi 
Ku,v,s, J — I __̂  otherwise 

Intuitively, V may be regarded as a light field of false colors, with V(u, v, s, t) in
dicating the id of the feature polygon visible at ray L{u, v, s, t). Figure 17.3 shows 
examples of visibility maps. 

Visibility computation. The visibility map V is computed based on the vertex 
geometry of feature polygons' as well as the fact that feature polygons have no self-
occlusion by construction. The main calculation is that of the visibility of a set of 
relatively flat but non-planar polygons. This is a calculation that can be done effi
ciently using OpenGL. 

Consider rendering a non-planar polygon Pi into a view i(s,t)- A problem with 
this rendering is that the projection of Pi into the view i^(s,t) may be a concave 
polygon, which OpenGL cannot display correctly. One solution to this problem is a 
two-pass rendering method using the stencil buffer. This method works for feature 
polygons since they have no self-occlusion as we mentioned earlier. Alternatively, 
visibility map computation can be simplified by restricting feature polygons to be 
triangles without supplementary feature lines. However, the user is required to draw 
many feature polygons, which makes feature specification unnecessarily tedious. 

Ray bundles. Based on the visibility map V, the rays of L can be grouped accord
ing to their associated feature polygons. A group so obtained is called a ray bundle, 
denoted as R{Pi) where Pi is the associated feature polygon. As we shall see in Sec
tion 17.4, R{Pi) can be warped using ray-space warping with the control primitives 
of Pi (see the ray-space warping equation (17.1) in Section 17.4.1). The ray corre
spondence of R{Pi) is thus completely determined by the control primitives of Pj. 
Rays that do not belong to any ray bundle are called background rays. Background 
rays are controlled by the background edges. Ray bundles have been used in the 
context of global illumination [292]. 

17.4 Warping 

As mentioned, for each 0 < a < 1, the light field morph La is obtained by blending 
two light fields LQ and Li, which are warped from LQ and Li for feature alignment. 

^ Using feature polygons to handle occlusion is related to layered representations in image-
based rendering (e.g., [264J). 
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In this section, we discuss the warping from LQ to LQ since the warping from Li 
to Li is essentially the same. We also describe an efficient warping algorithm for 
animation sequences of 3D morphing. The warping from LQ to LQ takes the follow
ing steps: (a) calculate feature polygons and background edges of LQ, (b) build the 
visibility map of LQ, (C) compute ray bundles of the warped light field LQ, and (d) 
treat background rays. 

17.4.1 Basic ray-space warping 

Because the rays of a light field L are grouped ray bundles, the basic operation of 
light field warping is to warp a ray bundle R{Pi). For simplicity, let us assume that 
L has only an n-sided feature polygon Pi, whose feature lines are {E^,..., £;"+'=} 
before warping and {E^,..., £"+''} afterwards. 

The basic ray-space warping regards the warped light field L as a 4D ray space 
and directly computes color values of individual rays: 

L{u, w, s, t) = L(u', v', s', t'), 

where 

and («', t') are free variables in the (s, i)-plane. The vector function f () is the Beier-
Neely field warping function [121. For a given point {u,v) in view L(s,t).f() finds the 
preimage {u',v') in view L(gi^ti) based on the correspondence between the feature 
fines El,^^,y ..., Ep'^,^ in L(,;,,,) and E^^^ ..., Ep^'; in L(,.,). 

For each ray L(u,v, s,t), the basic ray-space warping provides a set of rays 
{L{u',v',s',t')] whose colors can be assigned to L(u, u, .s,i). Possible values of 
(,s', t') include (.s, t), in which case ray-space warping yields the same resuk as image 
warping [12]. 

17.4.2 Liglit field warping 

To warp the light field LQ to LQ, we apply the basic warping methods described above 
to feature polygons of LQ. The warping takes four steps. First, feature polygons and 
background edges of LQ are calculated. The verfices of feature lines in LQ are linearly 
interpolated from their counterparts of LQ and Li. Figure 17.5 (top row) shows an 
example of feature interpolation. For i = 0 , 1 , let {v j , •••, v j j be the vertices of 
feature lines in L,. The vertices of feature lines in LQ are {v i , ..., v „ } , where 

Vfc = (1 - a ) v ^ + a v [ , k = l,..., n. 

The connections between the vertices are the same in LQ and LQ. Thus we can easily 
obtain the feature polygons of LQ as well as their control primitives. 

Second, the visibility map of LQ is built; this gives us information about the 
visibility changes caused by object shape change. Using the edge geometry of feature 
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Fig. 17.5. Issues in light field warping. Top row shows interpolation of feature polygons, 
viewed from {s,t) = (3,0). (a) Light field Lo with feature lines, (b) Light field Lo.s with 
feature lines, (c) Light field Li with feature lines. Bottom row shows a hole caused by object 
shape change, (d) Light field Lo viewed from (s, i) = (3, 0). (e) Warped light field Lo viewed 
from (s, t) = (3, 0). The area highlighted in green is a hole corresponding to the occluded 
part of a feature polygon in (d). (f) Light field Lo viewed from (s, t) = (32, 32). The feature 
polygon occluded at view (a, t) = (3,0) is now fully visible. 

See color plate section near center of book. 

polygons of LQ, we can perform the visibility calculation of these polygons, with 
non-planar polygons rendered by the view-dependent triangulation as before. The 
result of this visibility calculation is the visibility map of LQ. 

Third, the warped ray bundles of light field LQ = {^o (s,f)} are computed view-

by-view. Consider processing ray bundle R{Po) in view LQ Ĵ . t) for feature polygon 

Po that corresponds to feature polygon PQ in LQ. LO{U, V, S, t) is evaluated in three 

steps: 

1. Visibility testing. The visibility map of LQ is checked to see whether PQ is 
visible at ray Lo{u',v',s,t) determined by the ray-space warping equation (17.1) 
with {s',t') = {s,t). 

2. Pixel mapping. If PQ is visible at ray Lo{u',v',s,t), we let Lo{u,v,s,t) = 
Lo{u',v',s,t). 

3. Ray-space warping. Otherwise, LQ (s,t)(w, v) is in a hole, and ray-space warp
ing is used to fill the hole. Figure 17.5 (top row) shows an example of a hole. The 
basic ray-space warping described earlier provides a set of values {Lo{u', v', s', t')} 
parameterized by free variable {s',t'). Using the visibility map of LQ, a search is 
performed for the "nearest visible ray" Lo{u', v', s', t') such that PQ is visible at ray 
Lo{u',v',s',t') determined by the ray-space warping equation (17.1) and {s',t') is 
as close to (s, t) as possible. This search starts from the immediate neighbors of (s, t) 
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Fig. 17.6. 3D facial morphing. 

in the (s, t)-plane and propagates outwards, accepting the first valid {s', t'). Note that 
the search will never fail because PQ by construction is fully visible in at least one 
view of Lf). Once (s ' , //) is found, we set 

L{u, V, s, t) = Lo{u', v', s', t') 

according to the ray-space warping equation (17.1). Figure 17.4 illustrates the "near
est visible ray." 
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Fig. 17.7. A morphing example with large occlusions and specular surfaces. 

In the last step, background rays, which correspond to pixels not covered by the 
projection of any feature polygon, are processed. Image warping is applied to these 
pixels, using the background edges and (projected) feature polygon edges as control 
primitives. 

The idea behind choosing the "nearest visible ray" is the following. For LQ {U, V, S, t), 
the basic ray-space warping provides a set of values {Lo{u',v', s ' , i ' ) } . Under the 
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Lambertian surface assumption, all rays are equally valid. However, the Lambertian 
surface assumption only approximately holds despite its widespread use in image-
based rendering [40, 260]. By choosing the visible ray nearest to ray Lo{u', v', s, t) 
when PQ is occluded at the latter, we are trying to minimize the error caused by the 
Lambertian surface assumption. 

Note that for the "nearest visible ray," we choose a visible ray Lo{u',v',s',t') 
with {s',t') as close to {s,t) as possible. This is the measure of "closeness" used 
in [160]. A more natural measure is the angle deviation in [22]. Unfortunately, 
calculation of angle deviation requires a good estimation of the depth at pixel 
LQ (5^()('U','(;'). The estimated depth from the associated feature polygon may not 
be accurate enough. 

Fig. 17.8. Morphing between two real objects. 

17.4.3 Warping for animation 

The system can produce animation sequences that allow the user to observe a mor
phing process from a camera moving along an arbitrary path in 3D. In particu
lar, the camera does not have to be inside the (s,t)-plane. One way to compute 
such a 3D morphing sequence is to first compute a sequence of light field morphs 
M = {LQ,Lx/n,..., L(„„X)/T),I-^I} and then create the 3D morphing sequence by 
rendering the light field morphs in M. Unfortunately, the CPU/storage costs for com
puting M can be very high. We now describe a method for generating a 3D morphing 
sequence without fully evaluating the sequence M. 

Suppose we are given a and we want to compute the image /„ in the morphing 
sequence. From the known camera path and a, we can find the camera position v^,. 
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The image /„ is a blend of two images /Q and / i , where IQ is warped from LQ 
and / i is warped from Li. The image /Q is warped from LQ by first calculating, for 
each pixel {Xa, Va) in the image IQ, its corresponding ray (MQ, w ,̂ Sa,ta) and then 
applying ray-space warping. The image / i is warped from Li the same way. 

17.5 Results 

The light field morphing algorithm was implemented on a Pentium III 667 MHz PC. 
In this section, we show some results and a few applications of light field morphing. 

17.5.1 3D morphs and animations 

A 3D morph La represents a plausible object having the essential features of both 
the source and target objects. La can be interactively displayed through light field 
rendering [160]. An animation sequence of the 3D morphing process from a camera 
moving along an arbitrary path in 3D can also be generated. 

Figure 17.6 shows a 3D facial morphing between an Asian male and a Cau
casian male. Both light fields are 33 x 33 in the (.s,i)-plane and 256 x 256 in the 
(w, ij)-plane. These light fields are rendered in 3D Studio Max from two Cyberscan 
models, each having about 90k triangles; the models are not used for morphing. Fea
ture specification took about 20 minutes, and it involved the following: 12 pairs of 
feature polygons and 9 pairs of supplementary feature lines with 41 pairs of feature 
points, and 8 background polylines with 53 background edges. On the average, a 
background polyline was specified in 8 out of the 1089 views of each light field and 
interpolated into other views. With unoptimized implementation, the two global vis
ibility maps took 37 seconds each, whereas light field warping and blending took 15 
seconds and 0.5 seconds respectively per image. 

Figure 17.7 provides an example with large occlusion and specular surfaces. The 
light fields are acquired the same way at the same resolution as in the 3D facial 
morphing example. Feature specification took about 30 minutes. Here, 50 pairs of 
feature polygons and 1 pair of supplementary feature lines with 126 pairs of feature 
points were specified. Four background polylines (made of 50 background edges) 
were also specified. On average, a background polyline was specified in 8 out of the 
1089 views of each light field and interpolated into other views. 

Figure 17.11 shows the morphing between a real bronze statue and the famous 
statue of Egyptian queen Nefertiti. The surface of the antique bronze statue shows 
complicated material property. This is very difficult to model with a textured geom
etry model, although some nice progress has been made in this area [67]. 

To acquire the light fields of the bronze statue, outside-looking-in CMs [267] 
were used; CMs are a slightly different parameterization of the light field. Three 
hundred images of the bronze statue were acquired at a resolution of 360 x 360. The 
CMs of the Nefertiti statue was rendered at the same resolution in 3D Studio Max 
from a textured model (model not used for morphing). Feature specification took 



382 Image-Based Rendering 

about 20 minutes. As for morphing time, the global visibility map took 15 seconds 
per map. Warping and blending took 7 seconds per image. 

Figure 17.8 shows the morphing between two real bronze statues: a deer and 
a horse. The light fields were acquired at the same resolution as in the Nefertiti 
example. Feature specification took about 25 minutes. The global visibility map took 
25 seconds per map. Warping and blending took 5 seconds per image. 
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Fig. 17.9. A frame (second from the left) enlarged from the 3D morphing sequence shown in 
Figure 17.1. 

17.5.2 Key-frame morphing 

As mentioned, key-frame morphing is light field morphing with very sparse light 
fields. Figure 17.1 and Figure 17.9 show the result of key-frame morphing between a 
real furry toy cat and the Stanford bunny. Note that the fur on the cat surface is very 
difficult to model with textured geometry models. 

Three photographs of the toy cat were taken using a calibrated camera. Three 
images of the bunny were rendered using the same camera parameters as the real 
photographs. Feature specification took about 7 minutes. The global visibility map 
took 4 seconds to compute for each object. Warping and blending each image of the 
3D morphing sequence took 24 seconds. 

The number of key frames needed depends on both the visibility complexity 
of the source and target objects and the presence of non-lambertian surfaces. As 
expected, the quality of key-frame morphing improves as more input images are 
used. In this regard, key-frame morphing is more flexible than view moiphing [260]. 
This flexibility is particularly important when, e.g., there are many visibility changes 
due to object shape change. In such a case, the nearest visible ray will be frequently 
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needed to fill the holes, and it is desirable to have the nearest visible rays to be 
actually nearer for highly non-Lambertian surfaces. 

17.5.3 Plenoptic texture transfer 

Given the source and target objects OQ and Oi represented by light fields LQ and Li, 
the texture of OQ is transferred to Oi by constructing a light field LQI as follows. 
First, the feature elements of LQI are obtained as those of Li. Second, LQ is warped 
to Lo for feature alignment. Finally, LQI is obtained as the warped light fields LQ-
Intuitively, a morph is created using the feature elements of Li and the radiance of 
LQ. Unlike 2D texture transfer (e.g., [71]), plenoptic texture transfer is a 3D effect. 
Figure 17.10 shows the result of plenoptic texture transfer from the furry cat toy in 
Figure 17.1 onto the Stanford bunny. Note that for plenoptic texture transfer to work 
well, the two objects should be similar to avoid texture distortions. 

17.6 Discussion 

In light field morphing, it is easy to handle complex surface properties. Geometry-
based 3D morphing, for example, will have difficulties with the furry cat example in 
Figure 17.1. On the other hand, the lack of geometry causes problems in light field 
morphing. An example is the view point restriction imposed by the input light fields. 
Geometry-based 3D morphing can be incorporated into light field morphing by using 
image-based visual hulls [190] as rough geometry to morph two light fields. How
ever, the visual hull geometry cannot replace feature polygons because visual hull 
geometry is obtained from the silhouette and thus cannot handle visibility changes 
not on the object silhouette. 

Light field morphing can be regarded as a generalization of image morphing 
(an image is a 1 x 1 light field) and as such can suffer the ghost problem in image 
morphing for poorly-specified feature lines [12]. Fortunately, the usual fixes in image 
morphing also work for light field morphing [12]. 

17.7 Concluding remarks 

This chapter describes an algorithm for morphing 3D objects represented by light 
fields. The principal advantage of light field morphing is the abihty to morph be
tween image-based objects whose geometry and surface properties may be too dif
ficult to model with traditional vision and graphics techniques. Light field morphing 
is based on ray correspondence, not surface reconstruction. The morphing algorithm 
is feature-based. An intuitive and easy-to-use UI is used for specifying feature poly
gons for controlling the ray correspondence between two light fields. The visibility 
changes due to object shape changes can be effectively handled by ray-space warp
ing. Finally, it is worth noting that light field morphing is a flexible morphing scheme. 
The user can perform 3D morphing by starting with a few input images and adding 
more input images as necessary to improve the quality of 3D morphing sequences. 
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Fig. 17.10. Plenoptic texture transfer. The fur of the furry cat toy in Figure 17.1 is transferred 
onto the surface of the Stanford bunny. The images show the bunny before and after the texture 
transfer from different viewpoints. 

See color plate section near center of book. 

Fig. 17.11. A morphing example involving a surface of complicated material property (the 
antique bronze statue). 

See color plate section near center of book. 
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multiple-center-of-projection images, 32 
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Nyquist sampling theorem, 103 
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painter's algorithm, 89 
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reference block coder (RBC), 248, 251 
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rendering 

layer-based, 64, 73, 88 
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object, 180 
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temporal, 180 

scalar quantization, 180, 181 
scene flow, 52 
scene representation, 69 
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shape-from-silhouette across time, 61 
signal-to-noise ratio, 177 
signed Hough space, 311 
simplified dynamic light field (SDLF), 277 
SNR, 177 
source intermediate format (SIF), 224 
spectral aliasing, 115 
spectral support, 96 
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sampled light field, 97 
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sprite, 235 
Stanford Light Field Camera, 56 
sub-QCIF, 210, 221,229 
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surface light field, 35, 85 
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tile seeking, 271 
tile switching, 270 
tracking, 255 
transfer methods, 24, 28 
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DC coefficients, 196 
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transfer, 30 
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two-layer representation, 64 
two-pass rendering, 80, 82 
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Huffman coding, 175, 196 
luminance AC Huffman code table, 197 
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distortion measure, 184 
Generalized Lloyd algorithm, 183 
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image vector quantization, 184 
lattice VQ, 205 
Linde-Buzo-Gray algorithm, 183 
mean absolute difference, 185 
mean absolute error, 185 
multistage VQ, 203 
reconstruction vectors, 183 
tree structure VQ (TSVQ), 204 
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video coding standards, 217 

H.261., 218 
H.263, 221 
MPEG-1, 223 
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MPEG-4, 229 

video formats, 207 
analog videos, 207 
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chrominance, 207 
digital videos, 208 
interlaced scanning, 208 
ITU-T BT.601 (CCIR601), 209 
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NTSC receiver primary system, 207 
NTSC transmission (Y,I,Q) system, 208 
progressive scanning, 208 
resolution, 208 
sub-QCIF, QCIF, CIF, 4CIF 16CIF, 210 
top field, 209 
YCbCr (4:4:4), (4:2:2), (4:1:1), (4:2:0), 
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YDbDr coordinate, 208 
YUV color difference coordinate system, 
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video matting, 352 
video objects (VO), 229 
video panorama, 22 
video textures, 22 
video-based rendering, 47 
view interpolation, 24 

spatial-temporal, 50 
view morphing, 24, 84 
view-dependent geometry, 34, 37, 42, 50 
view-dependent texture mapping, 34, 55, 

159 
Virtualized Reality, 47, 49 
visibility splatting, 82 
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visual node, 332 
visual path, 334 
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X-slits projection, 20 

YCbCr color system, 187 
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Fig. 2.19. Joint view triangulation. 
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Fig. 3.16. Overview of CMU modeling and rendering human movement, which includes 
movement transfer. Image courtesy of Simon Baker and German Cheung. ©2004 IEEE. 
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Fig. 5.4. Three reconstruction filters with different constant depths. 
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Fig. 5.6. Spectral support of a 2D light field. 
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Fig. 5.13. Minimum sampling points in joint image-geometry space. 
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Fig. 16.1. An example of rendering with pop-up light fields. 
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Fig, lfi.7. The UI for Pop-up light ield coRStrection. 
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one focal plane in the front one focal plane at the back 5 layers are popped up 

Fig. 16.12. Results for Pokemon light field. 
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t6.]3. Results for sparse images taken with unstructured camera positions. 
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Fig. 16.14. Comparison of results for furry rabbit. 
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Fig. 17.5. Issues in light field warping. 
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Fig. 17.10. Plenoptic texture transfer (furry cat toy to Stanford bunny). 

Fig. 17.11. Morphing example (antique bronze statue). 




